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Abstract—While hardware and software improvements greatly
accelerated modern database systems’ internal operations, the
decades-old stream-based Socket API for external communication
is still unchanged. We show experimentally, that for modern
high-performance systems networking has become a performance
bottleneck. Therefore, we argue that the communication stack
needs to be redesigned to fully exploit modern hardware—as has
already happened to most other database system components.

We propose L5, a high-performance communication layer for
database systems. L5 rethinks the flow of data in and out of the
database system and is based on direct memory access techniques
for intra-datacenter (RDMA) and intra-machine communication
(Shared Memory). With L5, we provide a building block to
accelerate ODBC-like interfaces with a unified and message-
based communication framework. Our results show that using
interconnects like RDMA (InfiniBand), RoCE (Ethernet), and
Shared Memory (IPC), L5 can largely eliminate the network
bottleneck for database systems.

I. INTRODUCTION

Modern main-memory database systems can process hun-
dreds of thousands of TPC-C transactions per second [51],
and for key/value-style workloads, millions of transactions per
second are possible [53], [51]. Such benchmark results are,
however, virtually always measured by generating the workload
within the database system itself—ignoring the question of
how to get the load into the system in the first place.

For decades, the standard approach for communication
between different processes has been (and still is) the operating
system’s Socket API. Sockets are well-understood, widely-
available, fairly portable, and fast enough for traditional
database systems. For example, using OLTP-Bench [14]
we measured that PostgreSQL achieves around 220 TPC-
C transactions per second using one thread. At these low
transaction rates, standard Sockets are not the bottleneck—
even though OLTP-Bench does not use stored procedures but
rather sends each SQL statement separately over the network.

For modern in-memory database systems the situation is very
different: We found that the backend of Silo [51] can process 58
thousand transactions per second using a single thread (more
than 200× faster than PostgreSQL). However, unlike OLTP-
Bench, this number does not include communication (the very
thread processing transactions also generates the workload).
As Figure 1 shows, once we send each SQL statement through
the operating system’s network stack, the performance drops to
1,497 using TCP (39× slower) or 2,710 using Domain Sockets
(21× slower). These numbers show that for high-performance
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Fig. 1. Communication Bottleneck. TPC-C throughput using Silo.

database systems, networking and inter-process communication
have become the performance bottleneck.

It is important to realize that slow communication is not
due to fundamental limitations of the networking hardware.
To achieve Silo’s backend transaction processing performance,
the communication would need to support roughly one million
round trips per second. On a hardware level, both Ethernet and
InfiniBand have this capability with single-digit microsecond
latencies—corresponding to hundreds (rather than tens) of
thousands of round trips per second. Furthermore, using Shared
Memory, modern processors can exchange more than one
million messages per second.

Given these hardware characteristics, one may wonder why
most systems still rely on Sockets. After all, several cloud
providers already provide RDMA-capable instances [10], [2]
and Shared Memory is available on any system. We believe
that the main reason, as is often the case when a technically
superior solution fails to become widely adopted, is ease of
use. To fully exploit today’s networking hardware, one has to
use hard-to-use APIs like InfiniBand’s Remote Direct Memory
Access (RDMA) or its Ethernet pendant RDMA over Con-
verged Ethernet (RoCE). For fast inter-process communication
on the same machine, one has to implement concurrent message
passing in Shared Memory. Finally, one also has to orchestrate
and coordinate client and server processes to set up and use
these low-level techniques. Needless to say, this is much harder
and less portable than simply using Sockets.

To address these problems, we propose the Low-Level, Low-
Latency messaging Library (L5). L5 replaces traditional Sockets
and can transparently be configured to use RDMA (InfiniBand),
RoCE (Ethernet), or Shared Memory (IPC) as a communication
channel. For both remote communication over InfiniBand, as
well as between isolated processes on the same machine, L5
improves throughput and latency by over an order of magnitude.



This paper’s contributions are as follows:
1) We introduce L5 as a unified communication interface

to address the problems with adaptive switching of tradi-
tional protocols with direct memory access (Section II).

2) We provide an efficient implementation of local commu-
nication using Shared Memory (Section III).

3) We show that a high-performance implementation using
RDMA can provide similar performance within a data
center (Section IV).

4) We demonstrate in microbenchmarks and in an end-to-
end evaluation based on YCSB [13] that we can reach
one million transactions per second with just a single
client (Section V).

II. L5: LOW-LEVEL, LOW-LATENCY MESSAGING LIBRARY

The network bottleneck makes it necessary to redesign
the communication stack of data management systems. As a
core building block, we present L5 (Low-Level, Low-Latency
Library). L5 provides (1) high transaction throughput for small
payloads, (2) optimal performance with few clients, and (3) a
unified interface for adaptive selection of the best available
communication technology. Furthermore, L5 provides very low
latency without relying on batching at the application level.

L5 achieves this by bootstrapping high-performance con-
nections via regular Sockets, but then switches to a faster
communication channel. For intra-machine communication,
e.g., on a container host, L5 upgrades the connection to
use Shared Memory. For intra-datacenter communication, we
instead upgrade the connection to RDMA, all while providing
the same interface, no matter the underlying implementation.

In the following, we provide an extensive analysis and
evaluation of database interconnects and document an
optimized direct memory access protocol for low latency
database system communication. L5 is publicly available:
https://github.com/pfent/L5RDMA

A. Messaging Layer

L5 provides a message-based communication layer, designed
after the protocols which we found to be the default for all
database systems. This accelerates the synchronous use-case:
Applications send statements to a database server, wait for a
reply, and then (based on the reply) continue their execution.

Traditionally, database systems would avoid this problem
by giving applications the possibility to move most of the
interactive logic inside the database system using stored
procedures. However, empirical evidence shows that many
applications are not willing to move their business logic to the
database. Andrew Pavlo [38], for example, presented results of
a database administrator survey on real-world database system
usage. More than half of the DBAs reported that they do
not use stored procedures or only very rarely. By neglecting
communication performance, current database systems cannot
cater the needs of one half of their users.

This is especially limits applications with data dependencies
between statements. While techniques such as batching can
help for the simplest data dependencies like issuing queries
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Fig. 2. Communication Technologies. An overview of network and IPC
technologies. L5 brings ease of use to high-performance interconnects.

in a loop to load a set of values, transactional workloads like
the TPC-C payment already need multiple dependent round-
trips for each transaction. Inherently data-dependent workloads
such as graph traversals even need a round-trip per node,
extremely amplifying communication overhead. This leads
to the somewhat paradoxical situation that, while clients are
starved due to communication overhead, DBMS load is still
low. With L5, data-dependent applications can instead make
use of the otherwise idle DBMS resources.

Additionally, there are also applications that have real-time
requirements. One example are financial transactions, similar
to the brokerage described in TPC-E [11]. Depending on the
outcome of analyzing transactions, client decision systems
execute or abort Trade-Order transactions. For clients, the
system response time is crucial, since faster issuing of buys or
sells at market value might give better prices.

While higher parallel throughput (and generally more band-
width) can always be achieved by using more network hardware,
reducing response times actually needs careful optimization.
For the size of the messages, L5 targets around 100 Byte,
which is based on the fact that the commonly used TPC-
C benchmark [27] has a weighted average of around 49 Byte
payloads per transaction1.

B. System Integration

Existing implementations and installations make it necessary
to design a system that can be integrated into database systems.
One way to allow for a higher transaction ingestion rate would
be to simply eliminate expensive context switches between
kernel and user space by using a user-space network library
such as mTCP [21].

However, we found that mTCP offers minimal performance
benefit for single client scenarios and is inferior to RDMA for
a larger number of clients (cf. Section IV). In fact, it takes
over 100 clients to saturate an mTCP interface with 1.2 million
msgs/s. Instead, we want to be able to saturate a system with
only a handful of clients, which is not possible with current
TCP-based interfaces.

If we instead use communication based on direct memory
access, we can also partially relax the strong guarantees of TCP

1TPC-C uncompressed payload literals profile: 45 % new-order with an
average of 82 Byte, 43 % payment with 24 Byte, 4 % delivery with 8 Byte, 4 %
order-status with an average of 19.2 Byte, and 4 % stock-level with 12 Byte.

https://github.com/pfent/L5RDMA


and the Socket API. When sending data over a Socket, it is
impossible to retroactively interact with the message contents.
On the contrary, in a shared-access message buffer, data can
still be read back and even be changed while the remote side
reads it. While this has the new potential for “time-of-check to
time-of-use” bugs, simply copying the data out of the message
buffer (similar to how Sockets work under the hood) alleviates
this problem, while still providing excellent performance. On
the other hand, using direct memory access does not need to
relax the more serious guarantees of strong isolation between
client and server, and between different clients connected to
the same server, since it only needs to have the message buffer
as a shared object between one client and the server.

We categorize the complexity of the different connection
technologies compared to the potential benefit in Figure 2:
While TCP has the lowest barrier of entry and is used almost
everywhere, mTCP is only a moderate improvement for each
connection. UDP and protocols on top of it, like QUIC [20],
also have the potential to improve performance, but currently
lack hardware acceleration. Local communication options like
Domain Sockets and Shared Memory are more efficient, but
can obviously only be used between processes on the same
machine. When using RDMA for remote communication, the
potential of modern database management systems can be
leveraged almost as if they run on the same machine, and
maximum remote throughput can be reached with few clients.

In summary, L5 can significantly increase the ease of use
for complex direct memory access protocols: Bootstrapping
over regular sockets allows zero configuration and setup
overhead, and L5’s unified interface eliminates the need to
write thousands of lines of codes for RDMA and Shared
Memory. In combination, this allows effortless integration of
high-performance interconnects into the ODBC driver or the
database connectivity library of existing systems.

C. Why Sockets are Slow

The implementation of operating system interfaces has seen
a lot of development and its implementation is generally very
optimized. We argue that the reason behind Sockets lying in
the lower half of the performance spectrum is their fundamental
requirement of interoperability between architectures and
operating systems. A database system, on the other hand, has
more freedom to optimize the common case. Nevertheless,
they still use the operating system’s TCP Sockets, which is
the only protocol that allows reliable communication with a
wide interoperability, and is the de-facto standard for a wide
variety of different use-cases.

This interoperability is also the main source for TCP’s
complexity, which needs to support a wide variety of networks.
Contrarily, data management systems are often located in
datacenters where connection endpoints are as close to each
other as physically possible, either on the same network, or
even the same machine, only separated by thin virtualization
layers. TCP needs to deal with many edge cases, which simply
never appear in such environments and uses byte streams,
which do not fit the use-case of database systems, where both
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Fig. 3. Communication Concepts. Kernel based communication requires ex-
pensive system calls, while direct memory access allows cheap communication.

queries and transactional statements follow a request-reply
pattern with clear message semantics. This mismatch manifests
in most database access protocols in use today, where all
implementations we know of use messages on top of TCP’s
byte stream semantics.

Local alternatives like Domain Sockets can solve many of
TCP’s problems and significantly improve performance. But
even after shedding most overhead, they still bottleneck modern
in-memory database systems. In addition to TCP’s complexity,
system call overhead causes each message to consume more
than 10 000 cycles [47]. Recent mitigations for side channel
attacks like Meltdown [31] additionally amplify this effect. We
can instead use direct memory access, to which we will refer
in Unix terms as Shared Memory (SHM) and use a common
memory area to exchange messages. Figure 3 visualizes this
way of bypassing the kernel, where reading and writing data
only takes about 100 cycles.

L5 provides a way to use direct memory access for commu-
nication with a similar interface to those existing techniques.
E.g., it can use the same connection configurations as sockets,
since they bootstrap SHM, while it simultaneously avoids the
problem of noticing new or disconnected connections over
SHM alone. On top of the SHM or RDMA message buffer
L5 implements effective polling for new messages without any
system calls and allows equally efficient sending and receiving
of data. Both, RDMA and Shared Memory have more subtle
challenges, which we will discuss in the following two chapters.

III. LOCAL MESSAGING

In many latency-critical applications, the database client
(e.g., a web server) and the database server are located on the
same machine. In this setting, it might still be desirable to
have a separation of client and server into separate processes.
Lightweight container solutions like Docker make this setup
increasingly popular, since they make it easy to safely host
different applications on the same machine. Containers should
have very good local messaging performance without the need
for heavyweight network protocols, since applications can also
communicate through Shared Memory. This application is
different from single process database systems like SQLite [3],
where messages do not cross process boundaries. However,
unlike other high-performance applications, e.g., browsers or



char* client_setup_shm(int connection_to_server)
int fd = memfd_create("debug_name",

MFD_CLOEXEC | MFD_ALLOW_SEALING)
ftruncate(fd, SIZE)
send_fd(connection_to_server, fd)
return mmap(NULL, SIZE, prot, flags, fd, 0)

char* server_setup_shm(int connection_to_client)
int fd = recv_fd(connection_to_client)
fcntl(fd, F_ADD_SEALS, F_SEAL_SHRINK)
ftruncate(fd, SIZE)
// SHRINK_SEAL ensures: filesize >= SIZE
return mmap(NULL, SIZE, prot, flags, fd, 0)

Fig. 4. Shared Memory Setup. Code for safely setting up Shared Memory
mappings between two processes with memfd_create().

display servers, database systems rarely make use of Shared
Memory for communication.

In this section, we show how database systems can use L5’s
Shared Memory messaging layer, which greatly outperforms
other techniques. For local communication, L5 offers a one-to-
one channel, which is instantiated for every client.

A. Shared Memory

Shared Memory only offers direct sharing of system memory
resources via low-level access. This lack of safe interfaces
requires careful implementation, but has unprecedented per-
formance. In this section, we show that we can safely set up
Shared Memory, which still ensures proper process isolation.

1) Ring Buffer Setup: For the initial connection establish-
ment, L5 uses a Domain Socket. They provide many connection
management features, and are a convenient out-of-bounds
control communication channel. After connection establishment,
we can use the standard set of system calls (shm_open,
ftruncate, mmap) to create, map, and exchange a Shared
Memory segment. L5 exchanges the Shared Memory file
descriptor via the Domain Socket ancillary data channel
(cmsg), which bootstraps the high-performance connection.

The well-known setup still has some unfortunate pitfalls,
which need to be addressed to maintain a database’s safety
requirements. First, we require that clients allocate the initial
memory segment. Otherwise, a client could control the server’s
memory allocation and bypass its own resource limitations
(ulimit, cgroup). Second, the default Shared Memory
mappings are visible for third-party processes. To ensure
that only client and server can read the memory, we require
non-standard extensions for unnamed anonymous mappings
(O_TMPFILE on Linux or SHM_ANON on FreeBSD).

Third, the most intricate problem is that clients could also
arbitrarily manipulate the underlying file. A malevolent client
might shrink the file, causing the server to read beyond file
boundaries. This causes a SIGBUS signal for the server, which
is very hard to handle correctly. Identifying the causing file and
client would require significant runtime introspection, which
itself causes more problems than Shared Memory solves.

Since version 3.17, Linux has the most mature way to deal
with all of those problems: the memfd_create system call.
With it, we can create an anonymous memory mapping by
default and additionally can “seal” the underlying file. By
applying a seal, we permanently fix the sealed file’s properties.
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Fig. 5. Ring Buffer. For communication on one machine, we use a ring buffer
in Shared Memory with a virtual memory wrap-around mapping.

With F_SEAL_SHRINK we disallow any shrinking of the file,
eliminating the need to handle SIGBUS errors. Figure 4 shows
a simplified version of L5’s setup, which eliminates unintended
client interference with the database server.

For the actual communication, we place two ring buffers into
this Shared Memory segment: One for sending messages from
the client to the server and one for the reverse. Figure 5 shows
the ring buffer’s memory layout with a virtual memory wrap-
around mapping. With a second call to mmap, we configure
the memory mapping in a way that the buffer’s consecutive
virtual memory addresses map to the same physical address.
This common technique simplifies the implementation, as writes
to the buffer automatically wrap around.

2) Ring Buffer Management: The ring buffer has two main
purposes: To store in-flight messages and to catch under- and
overflow situations. For the messages, we use a simple message
format of the message size followed by the specified amount
of bytes. The buffer can then be polled for the next message by
reading the next size. Since random access in RAM is cheap as
long as there is no cache contention, we first write the actual
message and afterwards set the size. Once the size is set, x86’s
total store order guarantees that the message has already been
written completely.

We additionally maintain three pointers to track free space:
receiver_read This pointer is stored in Shared Memory,
but is only written by the receiver. It points to the first byte
of the next message to be received. The receiver polls this
memory, until it reads a non-zero value. In the example in
Figure 5, the receiver reads 11, indicating a message of that
size. It can then read the actual message, do its necessary
processing, zero out the memory (required to allow polling
the size), and then advance receiver_read.
sender_read This pointer is only stored at the sender (not

in Shared Memory). It ensures enough remaining empty buffer
space, preventing the sender from overwriting not yet read
messages. This pointer is a copy of the receiver_read,
and caches it lazily to reduce latency by minimizing cache
contention. It is synced occasionally (necessarily when the
buffer appears to be full, but ideally slightly before with-
out data dependencies) with the receiver_read pointer.
Therefore, it is not always up to date and can lag behind the
real progress of the receiver, as shown in the example.
sender_write This pointer is also only stored at the sender.

It points to the address that the next message should be written
to. When sending a message, we first check, if the buffer has
enough remaining capacity by querying the sender_read
pointer. Then it can first write the actual message, and then
set the preceding size and finally advance sender_write.



3) Adaptive Polling: On both sides, direct memory polling
ensures minimum latency and thereby increases throughput.
However, when there is not much traffic on the connection, it
consumes an entire CPU core without doing any useful work.
To avoid wasting resources, we deploy an adaptive polling
scheme, which detects an idle connection and backs off to
less resource-intense methods: After sending a message, L5
assumes a reply within a short duration and uses polling. After
a configurable number of tries, L5 stops busy polling and
uses yield commands to allow other threads to run on the
core. When even more time passes and no new message were
received, the thread transitions to waiting.

We can use a binary semaphore to safely and efficiently
fall back to blocking, but we require cross-process syn-
chronization. On POSIX systems, this is possible using a
PTHREAD_PROCESS_SHARED mutex and a binary condition
variable. On the receiver side, the transition is made by first
locking the mutex then setting an atomic flag (sleeping).
This flag indicates a receiver waiting on the condition variable.
Since a message could come in between checking the buffer
and setting the sleeping flag, the receiver needs to check
the ring buffer once again. This process guarantees a transition
to waiting on the condition variable, without missing a message.
On the sender side, the sleeping flag is checked after
sending a message, which does not increase response time.

B. Shared Memory Bandwidth
While the previous sections focus on achieving high syn-

chronous throughput for small messages, Shared Memory also
provides high bandwidth. Since there are several tuning knobs,
we also optimize bandwidth to achieve high throughput, not
only for small messages, but also for the occasional big data
transmission, which can equally profit from using Shared
Memory.
Baseline: Between processes, we are not limited by the avail-
able network bandwidth, but only by local memory speed. Our
Intel Xeon E5–2660 v2 has a theoretically available memory
bandwidth of 60 GByte/s (more details in Section V-A), but
can only be saturated using multiple threads. As a baseline,
the single threaded STREAM Benchmark [35] on our system
achieves 6.9 GByte/s for the copy operation. In our case of
inter process communication and given that there is some
synchronization overhead, our goal therefore is to get as close
as possible to that number.
Parameters: To determine the optimal parameters for max-
imum bandwidth, we transmit 10 GB over a Shared Mem-
ory connection and measure the average bandwidth of this
transmission. The heat map plot in Figure 6 can be used
to determine the optimal configuration to transmit data over
Shared Memory. The y-axis varies the size of the underlying
transmission buffer, which stores the “in-flight” data. On the
x-axis, we vary the size of the individually transmitted chunks.
This chunked transmission is necessary, because we transmit
more data than the underlying buffer can store. Therefore, we
copy a chunk of nByte into the Shared Memory segment,
then increment sender_write by n and repeat. The upper
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Fig. 6. Efficient Shared Memory Usage. Heat map indicating the achievable
bandwidths using different buffer and chunk sizes to transmit large amounts
of data.

right-hand side is empty, because writing chunks exceeding
the underlying buffer’s size is impossible.

We achieved the best bandwidth of 5.35 GByte/s with 128 kB
chunks transmitted via an 1 MB buffer (marked in bold).
However, results near this hot spot only vary by a few percents.
One very distinct feature of the heat map is the diagonal line,
where the buffer size is equal to the chunk size. This has the
effect that the reader can only start reading when the writer
has finished the current chunk and subsequent chunks can only
be written when the reader has finished reading this chunk.
This effectively turns the buffer into a locking mechanism with
mutual exclusion, greatly reducing the bandwidth.
Results: The figure also distinctly shows the cache sizes of
the processor (cf. Section V-A), with a slight performance
drop for chunk sizes exceeding the 256 kB Level 2 cache of
our system and a bigger performance drop when exceeding
the 25 MB Level 3 cache. In conclusion, we use chunk sizes
fitting completely into the L2 cache and never exceeding the
L3 cache. Transmission buffer sizes are harder to recommend,
since this strongly depends on the workload. Without inherent
data requirements, one should use a buffer size of approximately
5× to 10× the used chunk size.

IV. REMOTE MESSAGING

In this section we discuss L5’s implementation of a high-
performance message buffer in shared remote memory. We
found that RDMA has non-trivial performance characteristics
that need to be taken into account. For the implementation
decisions, we first evaluate different RDMA communication
building blocks in microbenchmarks and then use these to
construct our messaging implementation. Furthermore, we
implement an efficient way to serve multiple remote clients
accessing a database server in a request-reply pattern.

A. User-Space TCP Is Not Enough

To validate that RDMA is the right technology to use, we
first tried replacing the server’s TCP stack with user-space
networking like mTCP and saw, that this does not significantly
improve response time. To get a performance baseline, we
measure the throughput of synchronous 64 Byte messages over
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TCP, mTCP, and RDMA. Figure 7 shows the number of
message round trips per second for this workload (hardware
details in Section V-A with a DPDK compatible NIC): All TCP
based configurations transmit less than 40 Kmsgs/s. RDMA can
transmit significantly more messages per second, which makes
its performance comparable to the throughput of modern data
management systems.

The issue is similar when moving to a multi client scenario.
Figure 7 also shows results of an experiment with an optimal
number of clients (in parentheses). We used one server, running
a single threaded RDMA endpoint and one client with multiple
threads to determine the peak message throughput of the server.
We also noticed, that TCP over InfiniBand has less overall
throughput, despite it being the faster fabric. The results show
that already a few RDMA clients can move the bottleneck to
a single threaded server.

B. RDMA Design Decisions

RDMA and RoCE offload most the network stack processing
from the processor onto the NIC to reduce CPU load. Recent
work [21] has shown that the fraction of CPU time spent
processing the network stack can be up to 80 %. RDMA can
eliminate the overhead with hardware support for reliable
transmission of data over RC connections. Additionally, RDMA
and RoCE bypass the operating system kernel and allow the
applications to talk directly with the NICs, thus avoiding costly
context switches.

C. Optimizing RDMA for Small Messages

We highlight two design decisions in L5’s use of the IB
verbs interface:
Request Polling: We compare different ways of using RDMA
primitives to transfer fix-sized messages between two machines
in Section IV-C. In this experiment, the client machine sends a
message to the server. Once received, the two machines switch
roles and the process is repeated. The three “Write” approaches
shown use a RDMA write work requests to place data directly
into the server’s memory. They differ in the way the server is
notified about the message’s arrival: In the “Polling” case, we
write data with a single write request and a busy loop constantly
polls front and back of the incoming memory location to
detect when transmission is finished. This approach relies on
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a front-to-back write order within one write request. While
this behavior has been documented for all hardware RDMA
implementations [15], [33], [24], software implementations
following RFC 5040 [40] might have a less strict write order.
As an alternative, we measure a “Two Write” implementation
that issues one write request for the bulk of the data and a
second single-byte request for RFC 5040 compliant message
detection. In the “Immediate” case, we attach a so called
immediate data value to the write work request. The immediate
value transfers 4 Byte of data outside the actual message and
is propagated to the receiver’s completion queue. In this case,
the server polls the completion queue instead.

The last approach “Send + Receive” uses send/receive work
requests to exchange messages. Just like in the immediate
case, we consistently poll the completion to reduce the
latency as much as possible. The experiments clearly show
that this is necessary to avoid the additional lookup in the
completion queue to achieve high message throughput rates.
With larger messages this overhead becomes less relevant,
because transferring the actual message becomes expensive.

We base L5’s implementation on polling a single write work
request, which most efficiently uses the hardware capabilities
for small message sizes. For our target message size of
around 100 Byte sized messages, we get around 70 % faster
synchronous throughput compared to using receive requests.

Message Delivery: To support a special mode for multiple
clients, L5’s messaging implementation requires two RDMA
writes per message: One to set an indicator flag that a new
message arrived and one containing the actual message (details
in Section IV-D). In Section IV-C we compare different tech-
niques for doing two consecutive RDMA write operations. First,
we use two write work requests and send these individually to
the NIC. The first one writes the actual data and the second
one sets the indicator flag. Due to the ordering guarantees of
RDMA, the message is completely written before the flag is
set. Next, we use the chaining feature of RDMA work requests,
which allows creating a list of work request that can be sent
to the NIC with a single function call. Lastly, we make use of
the immediate data feature again, by putting the indicator flag
into the immediate data value.

Our results show that chained work requests cause a
surprisingly large overhead, even though they execute fewer
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instructions on the CPU. The same holds for the immediate
data value, which forces the server to poll the completion
queue instead of directly polling the indicator flags. In result,
it is advisable to use the first technique, which simply uses
two distinct RDMA write request.

D. Implementation

Based on the previous findings, we implement a solution
matching our goals laid out in Section II. The RDMA
connection is initially bootstrapped with out-of-band com-
munication channel over TCP. This also allows upgrading
existing connections after authentication and RDMA capability
detection phases. The out-of-band channel is then used to
communicate locations of the mailbox flag and message buffer.
The control channel can also be used to adjust the initially
fixed buffer sizes for each client. When a client requests a
larger buffer, the server reallocates this client’s message buffer
and transmits the new location. This should be a rare case in
transactional workloads and therefore not influence the steady
state performance.

For the remote case, L5 supports an asymmetric connection
behavior, i.e., one database server that is serving small sized
requests from many clients. This is useful for a common pattern
we observed, where a database server can have many open
connections, but only a few are active in bursts (e.g. when
an ORM reads an object hierarchy). In related work, Chen
et al. [12] identified CPU cache efficiency as a contention
point for inbound messages. L5 therefore implements a cache
efficient polling mechanism for the server-side:

Client → Server: Figure 9 shows the memory layout on the
server side with two distinct memory regions. Each row in
the message buffer on the right represents the receive-buffer
for one client. Each corresponding “mailbox” flag on the left
indicates whether this row’s client has written a new message
into the “message buffer”. As described in Section IV-C, we
use two RDMA write work requests: The first one writes the
message and the second one sets the mailbox flag. Due to
the ordering guarantees of reliable RDMA connections, the
message data is guaranteed to be completely written before
the flag is set and thus, the server can never see incomplete
messages. In the example in Figure 9, the second client has
completed sending a message and thus already set the mailbox
flag. The fourth client still has a message “in-flight”, without
the mailbox flag set.

The separation of messages from indicators for available
messages in the “mailbox” allows efficient polling for incoming
messages. This dense indicator buffer is possible, because
RDMA allows writes of single bytes. Directly polling the
message buffer would cause increased latency because of
additional cache misses. L5’s continuous mailbox array has
optimal cache locality, which allows polling 64 client connec-
tions with a single cache line. Additionally, the server can use
SIMD instructions to efficiently poll the mailbox. Whenever it
encounters a set flag, it handles the message, clears the flag,
and sends a reply. Once the client has received a reply, it knows
that it is safe to send the next message.
Server → Client: In the other direction, we assume to
receive only answer messages from a single source, due to the
asymmetric relationship between client and server. Therefore,
L5 can use an optimized layout that requires only a single
RDMA write request per message:

[10] result=420 O
K

The first field [10] is the message’s size and is always
transmitted as a 4 Byte integer value. The client waits for a
message, by constantly polling this memory address. Once it
reads a value different from zero, it detects the start of a new
message. The server appends an additional byte [OK] after
the actual message. Once this [OK] byte is set, the RDMA
RC write order guarantees that the message has been completely
transmitted. A second, validating read of the message size
detects torn writes. This structure resembles the buffer in Shared
Memory, as it supports arbitrary sized result sets. Typically,
requests are small or even fixed size, but transaction results
might be larger than expected and consist of multiple messages.
This way, the buffer can seamlessly handle typical workloads.

Apart from the efficiently using RDMA primitives, our
implementation benefits from three additional optimizations:
(1) A virtual memory wrap-around mapping similar to the local
ring buffer reduces the total amount of writes. It allows to
always use a single, continuous, and unconditional write, which
reduces worst-case latency. (2) Common RDMA optimization
techniques, such as using inline messages for small payloads
and selective signaling of verb completion reduces overhead.
(3) Eager, asynchronous reads of the remote read position
allow single RTT writes in the common case.

V. EVALUATION

So far, we justified the design of L5 primary with mi-
crobenchmarks, and Figure 1 showcases the overall per-
formance impact of low-latency communication on an in-
memory database system running the TPC-C benchmark. In
the following, we first discuss the experimental setup, then
evaluate L5 with a lightweight workload that is sensible for the
network bottleneck, and compare our implementation to popular
DBMSs. Finally, we compare the RDMA implementation of
L5 to two state-of-the-art communication frameworks.

A. Hardware Details
We conducted our experiments on two dual socket machines

equipped with Intel Xeon E5–2660 v2 processors running at



2.2 GHz. The machines have 256 GByte of main memory and
are organized as NUMA systems with 128 GByte per socket.
Both machines are equipped with a Mellanox ConnectX–3 VPI
NIC, which supports FDR InfiniBand with 56 GBit/s, and are
connected via a Mellanox SX6005 switch. To avoid NUMA
effects, which are not the focus of our work, we run our
experiments exclusively on the socket that is directly connected
to the network card.

B. Yahoo! Cloud Service Benchmark

As an end-to-end workload, we use the Yahoo! Cloud Service
Benchmark (YCSB) [13]. YCSB is a simple key-value store
workload, which uses one table with a 4 Byte key and 10 string
fields with 100 Byte each. It defines CRUD-style operations,
but since we are focused on the network we only use the read
workload YCSB-C. Each transaction consists of the following
steps: First, the client generates and sends a randomized, valid
lookup key using a Zipf distribution [19] with z = 1. Once
received, the server queries its key-value store and returns one
of the string fields to the client.

The in-memory DBMS Silo achieves around 1 million
YCSB-C lookups per second on a single thread without
communication overhead. For the network-centric evaluation,
we send prepared-statement messages via L5 to Silo. The
benchmark of Figure 1 already demonstrated that changing
the underlying communication layer using L5 can significantly
improve the network bottleneck.

C. Software Setup

We compare our own implementation to state-of-the-art
commercially available DBMSs. DBMS X uses the ODBC
API [17] and supports three different connection options on
Windows: TCP, Shared Memory, and Named Pipes. We consider
it the most advanced implementation of a Shared Memory,
client-server database connection. L5 is designed for Linux,
where DBMS X’s only available connection option is TCP.
Therefore, we conduct local DBMS measurements on Windows
in addition to Linux. Networked experiments were measured
between two Linux machines.

We also include MySQL [5], since Raasveldt and Müh-
leisen [39] measured very promising serialization times. In our
measurements, we used its Connector/C (libmysqlclient). By
using each database’s native client library, we achieve maximum
performance, since the native libraries use the communication
protocol with the least overhead. All tested databases also
provide ODBC connectors, which would be significantly easier
to test, but are usually implemented as a wrapper of the native
libraries used in our experiments. PostgreSQL [48] is another
interesting competitor, since many other systems implement
and support its protocol. To measure it, we used the native client
library libpq. Additionally, we compare SQLite as an in-process
database without the communication between processes.

All database systems use prepared statements with placehold-
ers to reduce message size and avoid SQL parsing overhead.
In case of Silo, we transmit a structure specifying the prepared
statement ID and the placeholder value to routines written in

TABLE I
LOCAL YCSB WORKLOAD C THROUGHPUT. COMPARISON OF THE LOCAL

SYNCHRONOUS THROUGHPUT OF DIFFERENT DATABASES. TESTED
CONNECTIONS: TCP, SHARED MEMORY (SHM), NAMED PIPES (NP),

DOMAIN SOCKETS (DS), AND LOOPBACK RDMA.

[sync. tx/s] TCP SHM NP DS RDMA

Silo + L5 50.5 K 685 K — 72.1 K 364 K
DBMS X* 7.56 K 11.5 K 11.5 K — —
MySQL* 10.0 K 45.9 K 27.6 K — —
DBMS X† 6.88 K — — — —
MySQL† 25.0 K — — 42.9 K —
PostgreSQL† 11.3 K — — 18.4 K —
SQLite† — 378 K — — —

C++. For the other systems, we use their native SQL capabilities
to execute the prepared statement.

D. Local Measurements

To evaluate L5’s Shared Memory implementation (Sec-
tion III), we use a single machine and compare against locally
available connection options. For this setup it is also possible
to use library database management systems such as SQLite,
which does not have a dedicated database connection but instead
uses regular function calls to access data. What makes those
systems undesirable is that there are a number of ways, e.g.
memory corruption bugs, in which the host process can corrupt
the database2. Our approach instead uses a dedicated one-to-
one connection in order to prevent bugs in the application to
break the database system’s ACID guarantees.
Throughput—YCSB Workload C: Table I shows a compari-
son of different systems’ synchronous transactional throughput.
In this experiment, we compare the locally available connection
types. Shared memory—where available—gives the best perfor-
mance. Other alternatives like Named Pipes or Domain Sockets
are consistently faster than the link-local TCP baseline. Those
results show that the connection technology can greatly limit the
throughput of the application. Even the best results of traditional
database connections are still orders of magnitude slower than
we would expect. This shows that it is worthwhile to rewrite
the network stack and have a dedicated implementation for
local communication. In the measurements of Silo with L5, we
additionally include the result for RDMA in local loop-back
mode. This implementation is very similar to Shared Memory,
but suffers from the round trip over the PCIe bus to the NIC
and can only reach around half of the SHM performance.

Silo in combination with L5 is consistently faster than
that of other databases, but we can also observe significant
performance differences between DBMSs, with MySQL having
a relatively good network stack. Still, SQLite’s in-process,
no-communication transactions outperform MySQL by an
order of magnitude. We achieve the overall best performance
with L5’s Shared Memory implementation, performing at
15× compared to MySQL and even outperforming SQLite’s in
process implementation.

2https://www.sqlite.org/howtocorrupt.html
*on Windows Server 2016
†on Ubuntu 18.04.1

https://www.sqlite.org/howtocorrupt.html


TABLE II
LOCAL YCSB TABLESCAN BANDWIDTH. COMPARISON OF LOCAL

BANDWIDTH OF DIFFERENT DATABASES OVER TCP, SHARED MEMORY
(SHM), NAMED PIPES (NP), AND DOMAIN SOCKETS (DS).

[MByte/s] TCP SHM NP DS

Silo + L5 257 274 — 261
DBMS X* 105 511 518 —
MySQL* 27 28 29 —
DBMS X† 186 — — —
MySQL† 508 — — 439
PostgreSQL† 148 — — 256
SQLite†3 — 711 — —

Bandwidth—YCSB Tablescan: Table II shows bandwidth
measurements for local communication channels. All systems
are far from reaching the theoretical bandwidth limits, having
over an order of magnitude headroom to the measured baseline
in Section III-B. For Silo + L5, we can observe that the
underlying connection technology only has a minor influence
on the tablescan bandwidth.

However, the mediocre tablescan bandwidth of Silo is not
caused by the network stack, but seems to be an inherent
limitation of its OLTP focused design. DBMS X’s bandwidth
can be significantly improved using Shared Memory, but it is
still an order of magnitude slower than what is theoretically
possible. In comparison, MySQL has consistently poor perfor-
mance on Windows, but performs 10× better on Linux. Given
its quite good transaction throughput using Shared Memory
on Windows, we suspect that this is a performance regression
in the current release.
Discussion: In most systems, we can observe sizable YCSB-C
performance variations from just changing the underlying
connection. But even DBMS X and MySQL, which both
support SHM under Windows, are still over an order of
magnitude off of the expected performance. Since DBMS X is
able to reach over 2 million operations in an internal T-SQL
loop, we suspect that this is caused by an incomplete operating-
system bypass. Instead of detecting incoming messages directly
through SHM, MySQL uses the Windows’ named event API
for notifications, which apparently has significant overhead.

The measurements of local tablescan bandwidth also show
significant differences between systems. Maybe as a surprise,
no tested DBMS can come close to saturating the available
bandwidth. While this might be caused by inefficient serial-
ization formats, as Raasveldt and Mühleisen [39] suggest, we
believe that many more aspects of system design play a role.
E.g., Silo’s storage and transaction implementation is optimized
for small and local accesses, but turns out to be a bad choice for
larger range-scans. Nevertheless, for DBMS X the used data
transport has high impact of reachable bandwidth and SQLite’s
in-process bandwidth shows that the network interfaces are
still lacking.

E. Remote Measurements

In Section IV, we conducted performance measurements
between two servers over TCP and RDMA. Since we focus on
client server communication, we concentrate on a single (one-

TABLE III
REMOTE YCSB WORKLOAD C THROUGHPUT. COMPARISON OF

SUPPORTED REMOTE COMMUNICATION TECHNOLOGIES.

[sync. tx/s] 1 G Eth 56 G IB RDMA

Silo + L5 15 K 27 K 302 K
DBMS X 3.1 K 3.7 K —
MySQL 7.1 K 8.0 K —
PostgreSQL 6.3 K 7.5 K —

TABLE IV
REMOTE TABLESCAN BANDWIDTH. COMPARISON OF SUPPORTED REMOTE

COMMUNICATION MODES.

[MByte/s] 1 G Eth 56 G IB RDMA

Silo + L5 99 227 266
DBMS X 111 76 —
MySQL 111 327 —
PostgreSQL 97 140 —

to-one) connection. The concept of scaling to many connections
is somewhat orthogonal (cf. Section V-F) and benefits from
efficient individual connections.

Throughput—YCSB Workload C: Table III shows a com-
parison of remote synchronous transaction throughput over
different network connections. L5’s results in this experiment
are similar to our microbenchmarks introduced earlier: To
utilize the performance of modern database systems (or any
network application with high message rates), it is necessary
to migrate to RDMA-based communication.

While upgrading the network hardware can already scale
the performance without any software modifications, most
systems show only minor improvements. Using RDMA-aware
messaging gives, similarly to SHM, over an order of magnitude
performance improvement.

Bandwidth—YCSB Table Scan: A full fetch of the YCSB
table amounts to about 1 GB payload data over the network,
which he ODBC 3.8 interconnect used by DBMS X transmits
using paged data block cursors. For our implementation using
L5, we use a similar approach and fetch blocks of 128 kB
(same as in Section III-B).

As Table IV shows, most databases somewhat profit from
the available bandwidth of the faster InfiniBand network.
Slow networks limit the overall throughput, i.e., the slowest
configuration with TCP over Gigabit Ethernet (1 G Eth).
Surprisingly, DBMS X is even slower with TCP over InfiniBand,
which might be caused by the computational overhead of
the translation layer (we previously observed it being sensitive
in Table II). No implementation even closely reaches the
theoretical maximum of 7 GByte/s.

Discussion: The bandwidth measurements also make the proto-
col overhead visible. When bandwidth is limited by the Gigabit
Ethernet fabric, we can observe a direct impact of serialization
format’s size overhead on throughput. E.g. PostgreSQL’s is
known to have high overhead.

When switching to InfiniBand, the database systems instead
run into processing limitations. Most systems already reach the
same bandwidth as link-local TCP, while we could reach much
higher bandwidth with L5’s RDMA implementation. In a sepa-
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Fig. 10. Silo + L5 Scale Out. Comparison of RDMA and TCP performance
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rate experiment, we determined this to be about 1.22 GByte/s.
We want to point out that this is reasonably close to the
maximum single stream communication an application can only
use at 1×FDR signaling rate (1.75 GByte/s). Our InfiniBand
installation uses a total of 4× link aggregation, which results
in the nominal data rate of 4 × 1.75GByte/s = 7GByte/s.
However, the nominal data rate can only be saturated with
multiple parallel streams, but RDMA over FDR InfiniBand can
be used to mitigate this situation.

F. Scale Out

Figure 10 shows the scale-out behavior of client connections
via different technologies. We run YCSB-C on Silo with L5
and increase the number of clients on the horizontal axis.

With this experiment, we can observe that both TCP and
RDMA can scale to some degree, but RDMA has a huge head
start. The TCP based implementation scales moderately from
1 to 20 clients, reaching about 300 k transactions per second.
RDMA already surpasses 300 k transactions per second with
2 clients, before saturating a single server with 4 clients. An
increasing number of server threads allows scaling to even
more clients, peaking at around 1.9 M transactions per second
with 4 server threads and 20 clients.

The 4 server threads scale linearly up to 10 client connections,
at which point we reach some limits of our system where the
clients start to run on hyperthreads. When scaling to even more
clients, some related work raises concerns due to dedicated
packet queues of RC connections. To evaluate this, we run
a similar experiment with 200 open connections. There, we
measure a 5 % overhead for a 10× increase in open connections,
which is significantly less that the overhead of using receive
requests, which we measured in Section IV-C.

G. Communication Frameworks

In the previous sections, we looked at the communication
of commercially available databases, which is slower than
L5 by over an order of magnitude. Related work also offers
general purpose communication frameworks targeted at high-
performance network needs. They either use DPDK for user-
space networking [46], [23] or directly support RDMA [1],
[49], [28], [23]. In the following, we compare L5 against two
promising implementations: Seastar [46] using DPDK and
eRPC [23] with RDMA support.
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Fig. 11. Communication Frameworks. Comparison of YCSB-C throughput
over communication frameworks. L5 and eRPC use RDMA, while Seastar
only supports DPDK.

These communication frameworks differ in applications and
target use-case from L5. For example, they commonly report
their performance numbers with batched messages, i.e., sending
8 or more messages in one transmission to distribute the
communication overhead over multiple messages. We do not
consider batching a part of the communication interface, but
rather a responsibility of higher-level frameworks, such as the
ODBC driver. In addition, they also do not provide a shared
memory interface, thus have only limited performance for link-
local database clients, i.e., multiple containers colocated on
one container host would need to incur full network overhead.

The hardware configuration for this experiment is largely
unchanged. One exception is the network fabric, where we
can not consistently use InfiniBand due to limited DPDK
support. Instead, we change our setup to use the same NICs,
but without the intermediary InfiniBand switch, which restricts
the configurable network fabric. With this change, we can run
the experiment either over Ethernet (DPDK and RoCE) or
InfiniBand (RDMA). Additionally, since the callback based
programming interfaces of eRPC and Seastar are not easily
integratable into Silo we run this experiment with a simple
custom hashtable instead. Those changes cause this experiment
to be not comparable to the previous experiments with a
significantly higher throughput.
Seastar: The communication framework in ScyllaDB [45] is
designed for extreme scalability. Seastar’s architecture is built
upon asynchronous programming with lightweight threads and
a custom network stack on top of DPDK, which enables it
to scale to multiple thousands of connections. They showcase
their performance with dual 40 G Ethernet NICs, where they
serve 7 M HTTP requests per second to 2048 clients, each with
multiple concurrent connections.
eRPC: Instead of treating network messages as a stream of
bytes, eRPC implements messages as remote procedure calls.
This design follows similar reasoning to ours and should be a
good fit for transaction throughput. Unlike L5, eRPC uses UD
send/receive operations, which they argue to be more scalable.

In our evaluation of eRPC, we used the same hard- and
software configuration as for L5, with RDMA and RoCE using
the standard Mellanox drivers for our NICs. In eRPC’s own
evaluation, they use a modified driver with no overflow and
invalid opcode checks, removed unused features, and disabled
locks ensuring thread safety.



Results: To compare the communication frameworks, we run
the YCSB-C workload as before, with one concurrent in-
flight transaction and no batching. Since neither of the two
frameworks supports Shared Memory, we limit our evaluation to
the remote case. Figure 11 shows that RDMA implementations
significantly outperform Seastar. This is rather unsurprising,
since Seastar uses a custom TCP/IP implementation and
performs as expected from our microbenchmarks in Section IV.
L5 outperforms eRPC by around 42 %, which is caused by
their decision to use send/receive instead of direct memory
polling. In this experiment, we can also see that the choice
of underlying network fabric is actually less important than
the use of direct memory communication and a performant
implementation thereof. Using L5 over Ethernet (RoCE) only
reduces performance by around 10 % and still outperforms
both other communication frameworks.

Both Seastar and eRPC trade individual client’s performance
for better scale out behavior. Instead, we argue that it should be
possible to saturate a system already with few clients, especially
when running them on the same machine. This is exactly the
setup where L5 shines: Optimal performance for each client.

VI. RELATED WORK

High-speed networking hardware (RDMA over InfiniBand)
has already been widely adopted in research and industry
to improve the performance of data management systems.
Due to the obvious benefits of faster network fabric, a large
body of work in the database community adopts RDMA
into the systems. Many papers focus on high-performance
distributed data structures as a basis for storage engines. In
addition, we see many advancements in distributed query and
transaction processing powered by the use of RDMA. However,
one important aspect that has been largely overlooked is the
improvement of the communication layer. In short:
How do we get requests into a database engine?

In the following, we compare our work with existing research
on client-database communication and give an overview of
other areas in database systems where RDMA has been applied.
Network protocols: Raasveldt and Mühleisen speed up
the communication of database systems with client appli-
cations [39]. They argue that de-/serialization of result sets
dominates execution time for OLAP workloads and propose a
more efficient columnar serialization method. In contrast, our
work studies the effects of replacing the underlying network
protocol of database systems to improve performance. Both
are important, but orthogonal efforts towards the same goal
and might have an optimal effect when combined.

Another effort for optimizing the client-database commu-
nication is MICA [30], a high-performance key-value store
with an optimized network stack. Their network layer uses
direct NIC access (kernel bypassing; similar to mTCP). Like
our implementation, MICA avoids the overhead of TCP, but
implements a custom communication protocol optimized for
small key-value items. The RDMA part of our paper extends
their idea by adopting it for high-performance interconnects
and provides a deep analysis of the involved techniques.

Distributed data structures: There is a large body of work
building data structures on RDMA [52], [22], [24], [55]. We
present three representative ones in the following:

FaSST [25] is a key-value store that efficiently uses RDMA
for small messages. It implements remote procedure calls (RPC)
using RDMA send/receive requests instead of directly reading
or writing memory. In combination with message batching
techniques to reduce NIC to CPU communication, their system
perfectly scales for parallel workloads. FaSST uses RDMA in
unreliable datagram mode, which they reason to be reliable due
to extremely rare packet losses. In contrast to their work, we
show that competitive latencies are possible without batching,
while additionally providing reliable communication channels.

FaRM [15] uses a message passing approach that uses
RDMA writes (similar to ours) for update transactions. Their
system also uses a ring buffer and a message detection approach
polling the memory location of the next message. For read
requests, the client traverses server side data structures using
RDMA. In contrast to our work, their approach requires
multiple round trips to traverse remote data structures and
is more difficult to extend to full-fledged transactions.

Pilaf [36] is a cuckoo hash table with self-verifying data
structures that can detect read-write races without client-server
coordination. Clients directly read from the server’s memory
via RDMA read operations. While their self-verifying feature is
promising, remote traversal of the hash table causes a significant
latency overhead.
Query and transaction performance: Classic database work-
loads can also profit from using RDMA and InfiniBand [50],
[32], [4], [16]. For join processing, Barthels et al. [7], [6]
investigate and optimize the scale out behavior of radix joins
for very large InfiniBand clusters. Other research has focused on
join performance by taking advantage of data distribution [43]
and skew [41]. Alonso et al. [4] propose a high-level API
for data flows. They simplify throughput-oriented, OLAP-style
applications rather than latency, which is important for OLTP.

Beyond joins, RDMA is beneficial for extending local
main memory capacity and thus avoids spilling on slow local
disks [29], [37]. Building on the huge bandwidth of RDMA,
MonetDB has been distributed by a ring topology and contin-
uously rotating data [18]. Rödiger et al. [42] use a distributed
exchange operator that can extend existing systems and scale.
While it is notoriously difficult to scale distributed transaction
processing [54], using RDMA made large advancements in
largely partitioned workloads [26]. Abstractions like Network-
Attached-Memory (NAM) [44], [8], [9] or partitioning [34]
have been proposed. They separate a distributed database into
compute and storage nodes, interconnected via RDMA. Using
this architecture, recent research suggests RDMA latency has
evolved so far that distributed transactions can scale [54].

VII. SUMMARY

We have shown that it is necessary to redesign and improve
existing network stacks to fully utilize the performance of
modern in-memory database systems. Our experiments suggest
that current network implementations are not performant



enough for high transaction rates. L5 addresses the problem
of low latency remote and local communication by leveraging
RDMA over InfiniBand and Shared Memory.

Using L5 makes the underlying network protocol transparent
for the database system. With this approach, we can adaptively
choose the best network technology while allowing to integrate
new ones without affecting the application itself. In result, L5
provides a single, performant interface for multiple different
technologies.
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