
CedarDB

CedarDB
Philipp Fent

philipp@cedardb.com

CedarDB

● TUM Startup
○ Started at TUM with Umbra
○ Cutting-edge database research
○ Query compilation
○ Disk-based with in-memory performance

Overview

2

CedarDB

● TUM Startup
○ Started at TUM with Umbra
○ Cutting-edge database research
○ Query compilation
○ Disk-based with in-memory performance

● “PostgreSQL for analytics”
○ PostgreSQL protocol and client compatibility
○ Simultaneous high-performance analytics and operations on the same data
○ Full utilization of modern hardware capabilities (e.g. massive parallelism, RAM capacity)
○ Transparently and gracefully scales beyond main memory
○ Several orders of magnitude speedup over existing systems

Overview

3

CedarDB
Performance

4

CedarDB
Performance

5

CedarDB
Overview

● “PostgreSQL for analytics”
○ PostgreSQL protocol and client compatibility
○ Simultaneous high-performance analytics and operations on the same data
○ Full utilization of modern hardware capabilities (e.g. massive parallelism, RAM capacity)
○ Transparently and gracefully scales beyond main memory
○ Several orders of magnitude speedup over existing systems

● Free Community Edition for Linux / Docker:
curl https://get.cedardb.com | bash

6

CedarDB
Agenda

● Recap: DBMS Components

● Relational Algebra Optimization

● Storage: B-Tree deep dive

Overview over cutting-edge database research
Research papers referenced like this ->

7

CedarDB
Agenda

● Recap: DBMS Components

● Relational Algebra Optimization

● Storage: B-Tree deep dive

8

CedarDB
Recap: DBMS Components

● SQL parsing

● Relational Algebra Plan

● Physical Execution Plan

● Storage Access

9

CedarDB
SQL Parsing

10

SELECT *
FROM R1,R3, (
 SELECT R2.z, count(*)
 FROM R2
 WHERE R2.y = 3
 GROUP BY R2.z
) R2
WHERE R1.x = 7
AND R1.a = R3.b
AND R2.z = R3.c

CedarDB
SQL Parsing

11

SELECT *
FROM R1,R3, (
 SELECT R2.z, count(*)
 FROM R2
 WHERE R2.y = 3
 GROUP BY R2.z
) R2
WHERE R1.x = 7
AND R1.a = R3.b
AND R2.z = R3.c

CedarDB
Relational Algebra Plan

● Set-Oriented Query Processing

● Allows abstract optimization

● Crucial for efficient execution

12

CedarDB
Physical Execution Plan

● Physical access paths

○ Index or table scan

13

CedarDB
Physical Execution in CedarDB

● Pipelined execution

○ Keeps values in registers

○ Minimizes materialization

14

CedarDB
Physical Execution in CedarDB

15

● Pipelined execution

● Data-centric code generation
○ Efficient code for complex expressions

%1 = zext i64 %int1; Zero extend to 64 bit
%2 = zext i64 %int2;
%3 = rotr i64 %2, 32; Rotate right
%v = or i64 %1, %3; Combine int1 and int2
%5 = crc32 i64 6763793487589347598, %v; First crc32
%6 = crc32 i64 4593845798347983834, %v; Second crc32
%7 = rotr i64 %6, 32; Shift second part
%8 = xor i64 %5, %7; Combine hash parts
%hash = mul i64 %8, 11400714819323198485; Mix parts

CedarDB
Physical Execution in CedarDB

16

● Pipelined execution

● Data-centric code generation

● Fully parallel algorithms
○ Allows scaling

○ Benefits from new hardware

CedarDB
Storage Access

● Storage on disk
● Row vs. column stores
● Hybrid storage for

transactions and analytics
○ Fast scans
○ Fast point lookups
○ Fast writes
○ Index structures

➡ B-Trees

17

CedarDB
Agenda

● Recap: DBMS Components

● Relational Algebra Optimization

● Storage: B-Tree deep dive

18

CedarDB

19

Query Optimization

● PostgreSQL grammar

● Parsed into relational algebra
○ Example: TPC-H Q17

○ https://umbra-db.com/interface/

https://umbra-db.com/interface/

CedarDB
Running Example: TPC-H Q17

● How much average yearly revenue
would be lost if orders were no
longer filled for small quantities of
certain parts?
This may reduce overhead
expenses by concentrating sales on
larger shipments.

20

CedarDB
Running Example: TPC-H Q17

21

-- TPC-H Query 17
select sum(l_extendedprice)
 / 7.0 as avg_yearly
from lineitem, part
where p_partkey = l_partkey
and p_brand = 'Brand#23'
and p_container = 'MED BOX'
and l_quantity < (
 select 0.2 * avg(l_quantity)
 from lineitem
 where l_partkey = p_partkey
)

CedarDB

22

Query Optimization

● PostgreSQL grammar

● Parsed into relational algebra
○ Example: TPC-H Q17

○ https://umbra-db.com/interface/

https://umbra-db.com/interface/

CedarDB

23

Query Optimization

● PostgreSQL grammar

● Parsed into relational algebra

● Optimizer passes over algebra

1: Unoptimized Plan

2: Expression Simplification

3: Unnesting

4: Predicate Pushdown

5: Initial Join Tree

6: Sideway Information Passing

7: Operator Reordering

8: Early Probing

9: Common Subtree Elimination

10: Physical Operator Mapping

CedarDB

24

Query Optimization

● PostgreSQL grammar

● Parsed into relational algebra

● Optimizer passes over algebra

1: Unoptimized Plan

2: Expression Simplification

3: Unnesting

4: Predicate Pushdown

5: Initial Join Tree

6: Sideway Information Passing

7: Operator Reordering

8: Early Probing

9: Common Subtree Elimination

10: Physical Operator Mapping

Rule-based
Canonicalization

Cost-based
Optimization

CedarDB

25

Expression Simplification

● Fold constants

● Canonicalize expressions

● Execute in evaluation engine

 o_orderdate >= date '1994-01-01'
and o_orderdate < date '1994-01-01' + interval '1' year

 ==

o_orderdate between date '1994-01-01' and date '1994-12-31'

CedarDB

26

Query Unnesting & Decorrelation

● Unnesting Arbitrary Queries

CedarDB

27

● Unnesting Arbitrary Queries
○ O(n²)

Query Unnesting

CedarDB

28

● Unnesting Arbitrary Queries
○ O(n²)

Query Unnesting

CedarDB

29

● Unnesting Arbitrary Queries
○ O(n²) -> O(n)

○ Huge improvement

Query Unnesting

CedarDB

30

Predicate Pushdown

● Place predicates at scan

● Propagate & fold constants

CedarDB

31

Predicate Pushdown

● Place predicates at scan

● Propagate & fold constants

CedarDB

32

Predicate Pushdown

● Place predicates at scan

● Propagate & fold constants

+ where p_partkey = 42

CedarDB

33

Predicate Pushdown

● Place predicates at scan

● Propagate & fold constants

CedarDB

34

Initial Join Tree

● Push joins through aggregates

● Expand transitive join conditions

 c_nationkey = s_nationkey
and s_nationkey = n_nationkey

 ==

 c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and c_nationkey = n_nationkey

CedarDB

35

Initial Join Tree

● Push joins through aggregates

● Expand transitive join conditions

● Drop unnecessary joins

select sum(o_totalprice)
 from customer, orders
 where c_custkey = o_custkey

 ==

select sum(o_totalprice)
 from orders

CedarDB

36

Cost-Based Optimization

● Heuristics vs. statistics

CedarDB

37

Cost-Based Optimization

● Heuristics vs. statistics

● Statistics in Umbra:

○ Samples

○ Distinct counts

○ Numerical statistics (mean, variance) for aggregates

○ Functional dependencies

⇒ Estimate execution cost

CedarDB

38

Sample Evaluation

● Maintain uniform reservoir sample

● Evaluate scan predicates σ on sample

● Execute in evaluation engine

● Surprisingly accurate
○ 1024 tuples ~ 0.1% error

select count(*)
 from lineitem
 where l_commitdate < l_receiptdate
 and l_shipdate < l_commitdate

CedarDB

39

Sample Evaluation

CedarDB

40

Sample Evaluation

CedarDB

41

Sample Evaluation

● Calculate matches-bitsets
● Combine them to optimize ordering

○ TPC-H Q12:

 where l_shipmode in ('MAIL', 'SHIP')
 and l_commitdate < l_receiptdate
 and l_shipdate < l_commitdate
 and l_receiptdate between date '1994-01-01'
 and date '1994-12-31'

 0100’0011’1010’0100’1110’1011’1011’1100’1010’1010’1011’0000’1011’0011’1100’0000
& 0000’1111’0000’1111’0000’1111’0000’1111’0000’1111’0000’1111’0000’1111’0000’1111
& 1111’0000’1111’0000’1111’0000’1111’0000’1111’0000’1111’0000’1111’0000’1111’0000
& 1010’0110’1110’1110’1000’0011’0111’0101’0110’1111’1001’1101’1110’0011’1000’0001

CedarDB

42

Join Ordering

● Mostly Hash Joins
○ Indexes don’t allow bushy plans -> less useful

CedarDB

43

Join Ordering

● Mostly Hash Joins

CedarDB

44

Join Ordering

● Mostly Hash Joins

● Distinct count estimates with Pat Selinger’s equations:

column1 = column2

F = 1 / MAX(ICARD(column1), ICARD(column2))

● HyperLogLog intersections

● Mean & stddev approximations for l_quantity < 0.2 * avg(l_quantity)

CedarDB

45

Sample Evaluation

● Estimate (correlated) predicates with confidence

● Any combination of predicates

● Tricky when 0 / 1024 tuples qualify

● Can do better for conjunctions

CedarDB

46

Physical Optimization

● Indexes

● Worst-case optimal join

● Groupjoin

● Range join

● Join micro-optimizations
○ Multiset semantics

○ Allocation sizes

CedarDB

47

Recap

● Query compilation & optimization
○ Optimizer passes

○ Rule-based canonicalization

○ Cost-based optimization

● Cutting-edge research
○ Join ordering

○ Cardinality estimation

○ Integrated in a running system

1: Unoptimized Plan

2: Expression Simplification

3: Unnesting

4: Predicate Pushdown

5: Initial Join Tree

6: Sideway Information Passing

7: Operator Reordering

8: Early Probing

9: Common Subtree Elimination

10: Physical Operator Mapping

CedarDB
Agenda

● Recap: DBMS Components

● Relational Algebra Optimization

● Storage: B-Tree deep dive

48

CedarDB
B-Trees

Hybrid storage engine:

● Row oriented
● Columnar storage
● Hybrid structure
● Best of both worlds
● Hot writes at end

49

CedarDB
B-Trees

Hybrid storage engine:

● Row oriented
● Columnar storage
● Hybrid structure
● Best of both worlds
● Hot writes at end

50

Disk / SSD Memory

CedarDB
B-Trees

● Universally used
○ XFS, Btrfs, APFS, & many DBMS

● 50 years old tech
● New storage engine in CedarDB

51

CedarDB
B-Trees

● Universally used
○ XFS, Btrfs, APFS, & many DBMS

● 50 years old tech
● New storage engine in CedarDB
● Still appropriate for modern hardware

52

CedarDB
B-Trees

● Example dataset:
ClickBench hits

● 70GB, 100M rows
● 3 levels

○ Fanout:
50 * 1500 * 1500

53

CedarDB
B-Trees

● Example dataset:
ClickBench hits

● 70GB, 100M rows
● 3 levels

○ Fanout:
50 * 1500 * 1500

54

CedarDB
B-Trees

● 100M rows
● 66,689 leafs
● 49 inner
● 1 root

55

CedarDB
On Modern Hardware

Cache efficiency

● 64 KB root
● 3.1 MB inner
● 4 GB leafs

56

CedarDB
On Modern Hardware

Cache efficiency

● 64 KB root
● 3.1 MB inner
● 4 GB leafs

57

CedarDB
On Modern Hardware

Cache efficiency

● 64 KB root
● 3.1 MB inner
● 4 GB leafs

Inner nodes cached
➡ almost no latency

58

L1
L2

L3

CedarDB
Lock Coupling on Modern Hardware

Problem:
Synchronization over 100s of cores

59

CedarDB
Lock Coupling on Modern Hardware

Problem:
Synchronization over 100s of cores

● Lock coupling
● All accesses through root node

60

CedarDB
Lock Coupling on Modern Hardware

Problem:
Synchronization over 100s of cores

● Lock coupling
● All accesses through root node

61

1. lock A
2. access A

A

CedarDB
Lock Coupling on Modern Hardware

Problem:
Synchronization over 100s of cores

● Lock coupling
● All accesses through root node

62

1. lock A
2. access A

3. lock B
4. unlock A
5. access B

A

B

CedarDB
Lock Coupling on Modern Hardware

Problem:
Synchronization over 100s of cores

● Lock coupling
● All accesses through root node

63

1. lock A
2. access A

3. lock B
4. unlock A
5. access B

6. lock C
7. unlock B
8. access C
9. unlock C

A

B

C

CedarDB
Lock Coupling on Modern Hardware

Problem:
Synchronization over 100s of cores

● Lock coupling
● All accesses through root node

64

CedarDB
Lock Coupling on Modern Hardware

Problem:
Synchronization over 100s of cores

● Lock coupling
● All accesses through root node

65

CedarDB
Lock Coupling on Modern Hardware

Problem:
Synchronization over 100s of cores

● Lock coupling
● All accesses through root node
● Leafs are fine-grained
● Root is bottleneck

66

CedarDB
Lock Coupling on Modern Hardware

Problem:
Synchronization over 100s of cores

● Lock coupling
● All accesses through root node
● Leafs are fine-grained
● Root is bottleneck
● Reference counting for shared

locks does not scale
● Every lock is an atomic write

67

CedarDB
Lock Coupling

Problem:
Synchronization over 100s of cores

● Lock coupling
● All accesses through root node
● Leafs are fine-grained
● Root is bottleneck
● Reference counting for shared

locks does not scale
● Every lock is an atomic write

68

root

CedarDB
Lock Coupling

Problem:
Synchronization over 100s of cores

● Lock coupling
● All accesses through root node
● Leafs are fine-grained
● Root is bottleneck
● Reference counting for shared

locks does not scale
● Every lock is an atomic write

69

root

CedarDB
Lock Coupling

Problem:
Synchronization over 100s of cores

● Lock coupling
● All accesses through root node
● Leafs are fine-grained
● Root is bottleneck
● Reference counting for shared

locks does not scale
● Every lock is an atomic write

70

root

CedarDB

Idea: Ask forgiveness, not permission

Optimistic Lock Coupling

71

CedarDB

Idea: Ask forgiveness, not permission

● Root changes rarely
● Just read unsynchronized, but verify

that we didn’t read wrong data

Optimistic Lock Coupling

72

CedarDB

Idea: Ask forgiveness, not permission

● Root changes rarely
● Just read unsynchronized, but verify

that we didn’t read wrong data

➡ Versioning, writers increment version

Optimistic Lock Coupling

73

CedarDB

Idea: Ask forgiveness, not permission

● Root changes rarely
● Just read unsynchronized, but verify

that we didn’t read wrong data

➡ Versioning, writers increment version

Also known as:
Seqlocks ~ Linux Kernel 2003

Optimistic Lock Coupling

74

CedarDB

Idea: Ask forgiveness, not permission

● Root changes rarely
● Just read unsynchronized, but verify

that we didn’t read wrong data

➡ Versioning, writers increment version

Also known as:
Seqlocks ~ Linux Kernel 2003

Optimistic Lock Coupling

75

CedarDB
Optimistic Lock Coupling

76

Lock Coupling:

1. lock A
2. access A

3. lock B
4. unlock A
5. access B

6. lock C
7. unlock B
8. access C
9. unlock C

A

B

C

Optimistic:

1. read v3
2. access A

3. read v7
4. validate v3
5. access B

6. read v5
7. validate v7
8. access C
9. validate v5

v3

v7

v5

CedarDB
Optimistic Lock Coupling

77

Lock Coupling:

1. lock A
2. access A

3. lock B
4. unlock A
5. access B

6. lock C
7. unlock B
8. access C
9. unlock C

A

B

C

Optimistic:

1. read v3
2. access A

3. read v7
4. validate v3
5. access B

6. read v5
7. validate v7
8. access C
9. validate v5

v3

v7

v5

6 atomic writes read only

CedarDB
Optimistic Lock Coupling

78

● Shared data
● No contention
● Less memory traffic

root

root

root

CedarDB
Optimistic Lock Coupling

Much better scalability!

79

CedarDB
Optimistic Lock Coupling

Much better scalability!

● Practically lock free
● Practically cache oblivious

But: Still rarely used

80

CedarDB
Optimistic Lock Coupling

Much better scalability!

● Practically lock free
● Practically cache oblivious

But: Still rarely used

● Conceptually simple
(for a lock free data structure)

● But the devil is in the details

81

CedarDB

philipp@cedardb.com

Try it now:
Free Community Edition for Linux / Docker:
curl https://get.cedardb.com | bash

