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● TUM Startup
○ Started at TUM with Umbra
○ Cutting-edge database research
○ Query compilation
○ Disk-based with in-memory performance
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● “PostgreSQL for analytics”
○ PostgreSQL protocol and client compatibility
○ Simultaneous high-performance analytics and operations on the same data
○ Full utilization of modern hardware capabilities (e.g. massive parallelism, RAM capacity)
○ Transparently and gracefully scales beyond main memory
○ Several orders of magnitude speedup over existing systems
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CedarDB
Overview

● “PostgreSQL for analytics”
○ PostgreSQL protocol and client compatibility
○ Simultaneous high-performance analytics and operations on the same data
○ Full utilization of modern hardware capabilities (e.g. massive parallelism, RAM capacity)
○ Transparently and gracefully scales beyond main memory
○ Several orders of magnitude speedup over existing systems

● Free Community Edition for Linux / Docker:
curl https://get.cedardb.com | bash
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CedarDB
Agenda

● Recap: DBMS Components

● Relational Algebra Optimization

● Storage: B-Tree deep dive

Overview over cutting-edge database research
Research papers referenced like this -> 
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Recap: DBMS Components

● SQL parsing

● Relational Algebra Plan

● Physical Execution Plan

● Storage Access
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SQL Parsing
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SELECT *
FROM R1,R3, (
    SELECT R2.z, count(*)
    FROM R2
    WHERE R2.y = 3
    GROUP BY R2.z
) R2
WHERE R1.x = 7
AND R1.a = R3.b
AND R2.z = R3.c
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SELECT *
FROM R1,R3, (
    SELECT R2.z, count(*)
    FROM R2
    WHERE R2.y = 3
    GROUP BY R2.z
) R2
WHERE R1.x = 7
AND R1.a = R3.b
AND R2.z = R3.c



CedarDB
Relational Algebra Plan

● Set-Oriented Query Processing

● Allows abstract optimization

● Crucial for efficient execution
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Physical Execution Plan

● Physical access paths

○ Index or table scan
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Physical Execution in CedarDB

● Pipelined execution

○ Keeps values in registers

○ Minimizes materialization
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● Pipelined execution

● Data-centric code generation
○ Efficient code for complex expressions

%1 = zext i64 %int1;                   Zero extend to 64 bit
%2 = zext i64 %int2;
%3 = rotr i64 %2, 32;                           Rotate right
%v = or i64 %1, %3;                    Combine int1 and int2
%5 = crc32 i64 6763793487589347598, %v;          First crc32
%6 = crc32 i64 4593845798347983834, %v;         Second crc32
%7 = rotr i64 %6, 32;                      Shift second part
%8 = xor i64 %5, %7;                      Combine hash parts
%hash = mul i64 %8, 11400714819323198485;          Mix parts
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Physical Execution in CedarDB
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● Pipelined execution

● Data-centric code generation

● Fully parallel algorithms
○ Allows scaling

○ Benefits from new hardware
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Storage Access

● Storage on disk
● Row vs. column stores
● Hybrid storage for 

transactions and analytics
○ Fast scans
○ Fast point lookups
○ Fast writes
○ Index structures

➡ B-Trees
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● Recap: DBMS Components

● Relational Algebra Optimization

● Storage: B-Tree deep dive
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Query Optimization

● PostgreSQL grammar

● Parsed into relational algebra
○ Example: TPC-H Q17

○ https://umbra-db.com/interface/

https://umbra-db.com/interface/


CedarDB
Running Example: TPC-H Q17

● How much average yearly revenue 
would be lost if orders were no 
longer filled for small quantities of 
certain parts?
This may reduce overhead 
expenses by concentrating sales on 
larger shipments.
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Running Example: TPC-H Q17
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-- TPC-H Query 17
select sum(l_extendedprice)
       / 7.0 as avg_yearly
from lineitem, part
where p_partkey = l_partkey
and p_brand = 'Brand#23'
and p_container = 'MED BOX'
and l_quantity < (
    select 0.2 * avg(l_quantity)
    from lineitem
    where l_partkey = p_partkey
)
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Query Optimization

● PostgreSQL grammar
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○ Example: TPC-H Q17

○ https://umbra-db.com/interface/
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Query Optimization

● PostgreSQL grammar

● Parsed into relational algebra

● Optimizer passes over algebra

1: Unoptimized Plan

2: Expression Simplification

3: Unnesting

4: Predicate Pushdown

5: Initial Join Tree

6: Sideway Information Passing

7: Operator Reordering

8: Early Probing

9: Common Subtree Elimination

10: Physical Operator Mapping
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Query Optimization

● PostgreSQL grammar

● Parsed into relational algebra

● Optimizer passes over algebra

1: Unoptimized Plan

2: Expression Simplification

3: Unnesting

4: Predicate Pushdown

5: Initial Join Tree

6: Sideway Information Passing

7: Operator Reordering

8: Early Probing

9: Common Subtree Elimination

10: Physical Operator Mapping

Rule-based 
Canonicalization

Cost-based 
Optimization
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Expression Simplification

● Fold constants

● Canonicalize expressions

● Execute in evaluation engine

    o_orderdate >= date '1994-01-01'
and o_orderdate <  date '1994-01-01' + interval '1' year

                            ==

o_orderdate between date '1994-01-01' and date '1994-12-31'
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Query Unnesting & Decorrelation

● Unnesting Arbitrary Queries
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● Unnesting Arbitrary Queries
○ O(n²)

Query Unnesting
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● Unnesting Arbitrary Queries
○ O(n²)

Query Unnesting
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● Unnesting Arbitrary Queries
○ O(n²) -> O(n)

○ Huge improvement

Query Unnesting
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Predicate Pushdown

● Place predicates at scan

● Propagate & fold constants
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Predicate Pushdown

● Place predicates at scan

● Propagate & fold constants
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Predicate Pushdown

● Place predicates at scan

● Propagate & fold constants

+ where p_partkey = 42
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Predicate Pushdown

● Place predicates at scan

● Propagate & fold constants
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Initial Join Tree

● Push joins through aggregates

● Expand transitive join conditions

    c_nationkey = s_nationkey
and s_nationkey = n_nationkey

               ==

    c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and c_nationkey = n_nationkey
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Initial Join Tree

● Push joins through aggregates

● Expand transitive join conditions

● Drop unnecessary joins

select sum(o_totalprice)
  from customer, orders
 where c_custkey = o_custkey

             ==

select sum(o_totalprice)
  from orders
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Cost-Based Optimization

● Heuristics vs. statistics
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Cost-Based Optimization

● Heuristics vs. statistics

● Statistics in Umbra:

○ Samples

○ Distinct counts

○ Numerical statistics (mean, variance) for aggregates

○ Functional dependencies

⇒ Estimate execution cost
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Sample Evaluation

● Maintain uniform reservoir sample

● Evaluate scan predicates σ on sample

● Execute in evaluation engine 

● Surprisingly accurate
○ 1024 tuples ~ 0.1% error

select count(*)
  from lineitem
 where l_commitdate < l_receiptdate
   and l_shipdate < l_commitdate



CedarDB

39

Sample Evaluation
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Sample Evaluation



CedarDB

41

Sample Evaluation

● Calculate matches-bitsets
● Combine them to optimize ordering

○ TPC-H Q12:

 where l_shipmode in ('MAIL', 'SHIP')
   and l_commitdate < l_receiptdate
   and l_shipdate < l_commitdate
   and l_receiptdate between date '1994-01-01' 
                         and date '1994-12-31'

  0100’0011’1010’0100’1110’1011’1011’1100’1010’1010’1011’0000’1011’0011’1100’0000
& 0000’1111’0000’1111’0000’1111’0000’1111’0000’1111’0000’1111’0000’1111’0000’1111
& 1111’0000’1111’0000’1111’0000’1111’0000’1111’0000’1111’0000’1111’0000’1111’0000
& 1010’0110’1110’1110’1000’0011’0111’0101’0110’1111’1001’1101’1110’0011’1000’0001
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Join Ordering

● Mostly Hash Joins
○ Indexes don’t allow bushy plans -> less useful
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Join Ordering

● Mostly Hash Joins
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Join Ordering

● Mostly Hash Joins

● Distinct count estimates with Pat Selinger’s equations:

column1 = column2

F = 1 / MAX(ICARD(column1), ICARD(column2))

● HyperLogLog intersections

● Mean & stddev approximations for l_quantity < 0.2 * avg(l_quantity)
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Sample Evaluation

● Estimate (correlated) predicates with confidence

● Any combination of predicates

● Tricky when 0 / 1024 tuples qualify

● Can do better for conjunctions
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Physical Optimization

● Indexes

● Worst-case optimal join

● Groupjoin

● Range join

● Join micro-optimizations
○ Multiset semantics

○ Allocation sizes
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Recap

● Query compilation & optimization
○ Optimizer passes

○ Rule-based canonicalization

○ Cost-based optimization

● Cutting-edge research
○ Join ordering

○ Cardinality estimation

○ Integrated in a running system

1: Unoptimized Plan

2: Expression Simplification

3: Unnesting

4: Predicate Pushdown

5: Initial Join Tree

6: Sideway Information Passing

7: Operator Reordering

8: Early Probing

9: Common Subtree Elimination

10: Physical Operator Mapping
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Agenda

● Recap: DBMS Components

● Relational Algebra Optimization

● Storage: B-Tree deep dive
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CedarDB
B-Trees

Hybrid storage engine:

● Row oriented
● Columnar storage
● Hybrid structure
● Best of both worlds
● Hot writes at end
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Hybrid storage engine:

● Row oriented
● Columnar storage
● Hybrid structure
● Best of both worlds
● Hot writes at end
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Disk / SSD Memory
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B-Trees

● Universally used
○ XFS, Btrfs, APFS, & many DBMS

● 50 years old tech
● New storage engine in CedarDB
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CedarDB
B-Trees

● Universally used
○ XFS, Btrfs, APFS, & many DBMS

● 50 years old tech
● New storage engine in CedarDB
● Still appropriate for modern hardware
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CedarDB
B-Trees

● Example dataset:
ClickBench hits

● 70GB, 100M rows
● 3 levels

○ Fanout:
50 * 1500 * 1500
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● Example dataset:
ClickBench hits

● 70GB, 100M rows
● 3 levels

○ Fanout:
50 * 1500 * 1500
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B-Trees

● 100M rows
● 66,689 leafs
● 49 inner
● 1 root
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CedarDB
On Modern Hardware

Cache efficiency

● 64 KB root
● 3.1 MB inner
● 4 GB leafs
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Cache efficiency
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CedarDB
On Modern Hardware

Cache efficiency

● 64 KB root
● 3.1 MB inner
● 4 GB leafs

Inner nodes cached 
➡ almost no latency
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L1
L2

L3
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Lock Coupling on Modern Hardware

Problem:
Synchronization over 100s of cores
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● Lock coupling 
● All accesses through root node
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1. lock   A
2. access A

A
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1. lock   A
2. access A

3. lock   B
4. unlock A
5. access B

A

B
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1. lock   A
2. access A

3. lock   B
4. unlock A
5. access B

6. lock   C
7. unlock B
8. access C
9. unlock C

A

B

C
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Problem:
Synchronization over 100s of cores

● Lock coupling 
● All accesses through root node
● Leafs are fine-grained
● Root is bottleneck
● Reference counting for shared 

locks does not scale
● Every lock is an atomic write
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root
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Idea: Ask forgiveness, not permission

Optimistic Lock Coupling
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Idea: Ask forgiveness, not permission

● Root changes rarely
● Just read unsynchronized, but verify 

that we didn’t read wrong data

Optimistic Lock Coupling
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Optimistic Lock Coupling
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Lock Coupling:

1. lock   A
2. access A

3. lock   B
4. unlock A
5. access B

6. lock   C
7. unlock B
8. access C
9. unlock C

A

B

C

Optimistic:

1. read     v3
2. access    A

3. read     v7
4. validate v3
5. access    B

6. read     v5
7. validate v7
8. access    C
9. validate v5

v3

v7

v5
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Lock Coupling:

1. lock   A
2. access A

3. lock   B
4. unlock A
5. access B

6. lock   C
7. unlock B
8. access C
9. unlock C

A

B

C

Optimistic:

1. read     v3
2. access    A

3. read     v7
4. validate v3
5. access    B

6. read     v5
7. validate v7
8. access    C
9. validate v5

v3

v7

v5

6 atomic writes read only
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Optimistic Lock Coupling
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● Shared data
● No contention
● Less memory traffic

root

root

root
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Much better scalability!
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● Practically lock free
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But: Still rarely used
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CedarDB
Optimistic Lock Coupling

Much better scalability!

● Practically lock free
● Practically cache oblivious

But: Still rarely used

● Conceptually simple
(for a lock free data structure)

● But the devil is in the details
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Try it now:
Free Community Edition for Linux / Docker:
curl https://get.cedardb.com | bash


