
106

Concepts of C++ Programming
Lecture 4: References, Arrays, Pointers

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology

Technical University of Munich

Winter 2024/25

107

Value Categories (Simplified)

lvalue

▶ Can appear on left side of
assignment

▶ Locates an object
▶ Has an address

▶ Examples:
▶ Variable names: var
▶ Assignment exprs: a = b

rvalue

▶ Can only appear on right side
of assignment

▶ Might not have address
▶ lvalue can be converted

implicitly to rvalue

▶ Examples:
▶ Literals: 42
▶ Most exprs: a + b, a < b

108

Reference Declarations (1)44

▶ Declare an alias to an existing object or function
▶ Lvalue reference: type& declarator

▶ Definitions must be initialized to refer to a valid object/function
▶ Declarations don’t need initializer, e.g. parameters

▶ Peculiarities:
▶ References are immutable, i.e. can’t change which object is aliased
▶ References are not objects
⇒ No references to references

44https://en.cppreference.com/w/cpp/language/reference

https://en.cppreference.com/w/cpp/language/reference

109

Lvalue References: Example (Alias)

unsigned i = 10;
unsigned j = 20;
unsigned& r = i; // r is now an alias for i

r = 15; // modifies i to 15
r = j; // modifies i to 20

i = 42;
j = r; // modifies j to 42

110

Lvalue References: Example (Pass By Reference)

▶ References are used to implement pass-by-reference semantics

#include <print>
void computeAnswer(int& result) {
result = 42;

}

int main() {
int theAnswer = -1;
computeAnswer(theAnswer); // theAnswer is now 42

}

111

Lvalue References: Example (Returning Reference)

▶ Function calls returning lvalue references are lvalues

int global1 = 0;
int global2 = 0;

int& getGlobal(int num) {
if (num == 1)
return global1;

return global2;
}

int main() {
getGlobal(1) = 10; // global1 is now 10
getGlobal(2)--; // global2 is now -1

}

112

References and cv-Qualifiers

▶ References themselves cannot be cv-qualified
▶ But the referenced type can be

▶ Reference can be initialized by less cv-qualified type
e.g. const int& can be initialized from int&

#include <print>

void printAnswer(const int& answer) {
std::println("{}", answer);

}

int main() {
int theAnswer = 42;
printAnswer(theAnswer); // cannot modify theAnswer

}

113

Pass-By-Reference

Quiz: What is the output of the program?

#include <print>
void foo(const int& a, int& b, const int& c) {
b += a;
b += c;

}

int main() {
int x = 1;
foo(x, x, x);
std::println("{}", x);

}

A. (undefined behavior) B. 1 C. 2 D. 3 E. 4

114

Dangling References45

▶ Lifetime of object can end while references still exist
⇝ dangling reference, when used: undefined behavior

int& foo() {
int i = 123;
return i; // DANGER: returns dangling reference

}
int bar() {
int& res = foo();
return res; // object used outside its lifetime => UB

}

45https://en.cppreference.com/w/cpp/language/reference#Dangling_references

https://en.cppreference.com/w/cpp/language/reference#Dangling_references

115

Rvalue References

▶ Extend the lifetime of temporary objects
▶ NB: const lvalue references can also extend lifetime of temporaries

▶ Rvalue reference: type&& declarator
▶ Cannot bind directly to lvalues

int i = 10;
int&& j = i; // ERROR: cannot bind lvalue
int&& r = 42; // OK

int&& k = i + i; // OK, k == 20
k += 22; // OK, k == 42

const int& l = i * i; // OK, l == 100
l += 10; // ERROR: cannot modify constant reference

116

Passing Rvalues

Quiz: What is the output of the program?

#include <print>
int foo(const int& a, const int& b, int&& c) {
c += b;
return c + a;

}

int main() {
int x = 1;
int r = foo(x, x, x);
std::println("{}", r);

}

A. (compile error) B. 1 C. 2 D. 3 E. 4

117

Passing Rvalues

Quiz: What is the output of the program?

#include <print>
int foo(const int& a, const int& b, int&& c) {
c += b;
return c + a;

}

int main() {
int x = 1;
int r = foo(x, x * 2, x + 10);
std::println("{}", r);

}

A. (compile error) B. (undefined behavior) C. 13 D. 14 E. 26

118

Reference Declaration Syntax

▶ & and && syntactically belong to the declarator!

int i = 10;
int& a = i, k = 2; // a is int&, k is int

⇒ Only declare one identifier at a time!

▶ int& j = 1; and int &j = 1; are valid, follow code style

119

Rvalue References: Overload Resolution
void foo(int& x);
void foo(const int& x);
void foo(int&& x);

int& bar();
int baz();

int main() {
int i = 42;
const int j = 84;

foo(i); // calls foo(int&)
foo(j); // calls foo(const int&)
foo(123); // calls foo(int&&)

foo(bar()) // calls foo(int&)
foo(baz()) // calls foo(int&&)

}

120

Arrays46

▶ Syntax (C-style arrays): type declarator[expression];
▶ expression must be an integer constant at compile-time
▶ Elements can be accessed with [] with index 0 · · · < N

▶ Arrays cannot be assigned or returned

unsigned short arr[10];
for (unsigned i = 0; i < 10; ++i)
arr[i] = i * i;

unsigned a[10];
unsigned b[10];
a = b; // ERROR: cannot assign arrays

46https://en.cppreference.com/w/cpp/language/array

https://en.cppreference.com/w/cpp/language/array

121

Array Initialization

▶ Without an initializer, elements are default-initialized
▶ Remember: for local variables, this means uninitialized

▶ Zero-initializer:
unsigned short arr[10] = {}; // 10 zeroes

▶ List-initializer:
unsigned short arr[] = {1, 2, 3, 4, 5, 6}; // 6 elements

122

Array Memory Layout
Elements of an array are allocated contiguously in memory
▶ Given unsigned short a[10]; containing the integers 1 through 10
▶ Assuming a 2-byte unsigned short type
▶ Assuming little-endian byte ordering

Address
02 04 0600

00 00 00 00 00 00 00 00 00 0001 05040302 080706 0a09
08 100e0c0a 12

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

Arrays are just dumb chunks of memory
▶ Out-of-bounds accesses are not detected
▶ May lead to rather weird bugs, not necessarily crashes
▶ Exist mainly due to compatibility requirements with C

123

sizeof Array

▶ Like for other types: sizeof return array size in bytes
▶ Divide by size of an element to determine array length

unsigned short a[10];

for (unsigned i = 0; i < sizeof(a) / sizeof(a[0]); ++i)
a[i] = i * i;

(Don’t do this in C++)

124

Multi-Dimensional Arrays

▶ Array elements can be arrays themselves

unsigned md[3][2]; // array with 3 elements of (array of 2 unsigned int)
for (unsigned i = 0; i < 3; ++i)
for (unsigned j = 0; j < 2; ++j)
md[i][j] = 3 * i + j;

unsigned b[][2] = { // only the outermost dimension can be omitted
{0, 1},
{2, 3},
{4, 5},

};

▶ Elements still allocated contiguously in memory

125

size_t47

▶ Designated types for indexed and sizes: std::size_t (<cstddef>)

▶ Unsigned integer type large enough to represent
all possible array sizes and indices on the target architecture

▶ Used throughout the standard library for indices/sizes

▶ Generally use size_t for indexes and array sizes
▶ For small arrays, unsigned might be sufficient
▶ Do not use int

47https://en.cppreference.com/w/cpp/types/size_t

https://en.cppreference.com/w/cpp/types/size_t

126

std::array48

C-style arrays should be avoided whenever possible
▶ Use the std::array type defined in the <array> standard header instead
▶ Similar semantics as a C-style array
▶ Optional bounds-checking and other useful features
▶ template type with two parameters (element type and count)

#include <array>
int main() {
std::array<unsigned short, 10> a;
for (size_t i = 0; i < a.size(); ++i)
a[i] = i + 1; // no bounds checking

}

48https://en.cppreference.com/w/cpp/container/array

https://en.cppreference.com/w/cpp/container/array

127

std::array
▶ ... can be returned (unlike C-style arrays)

std::array<int, 10> squares() {
std::array<int, 10> res = {}; // zero-initialize all elements
for (size_t i = 0; i < a.size(); ++i)
res[i] = i * i;

return res;
}

▶ ... can be passed as parameter (unlike C-style arrays)

// NB: src is copied by value, might be expensive!
// Prefer const std::array<int, 10>& src instead. (btw, don’t write this code)
void copy(std::array<int, 10>& dst, std::array<int, 10> src) {
assert(dst.size() == src.size() && "size␣mismatch!");
for (size_t i = 0; i < dst.size(); ++i)
dst[i] = src[i];

}

128

For-Range Loop

▶ Syntax: for (range-declaration : range-expression)
loop-statement

▶ Execute loop body for every element in range expression

std::array<int, 3> a = {1, 2, 3};
for (int& elem : a)
elem *= 2;

// a is now {2, 4, 6}

for (const int& elem : a)
std::println("{}", elem);

129

Special Case: String Literals

▶ String literals are immutable null-terminated character arrays
▶ Type of literal with N characters is const char[N+1]

▶ Artifact of C compatibility
▶ Generally avoid, use std::string_view or std::string instead
▶ Occasionally needed for interfacing with C APIs

130

String Literals

Quiz: What does the function f return?

size_t f() { return sizeof("Hello!"); }

A. (compile error) B. impl.-defined C. 5 D. 6 E. 7

131

Pointers49

▶ Syntax: type* cv declarator
▶ As for references/arrays/functions, the * is part of the declarator

▶ No pointers to references, cv qualifies the pointer itself

▶ Points to an object, stores address of first object byte in memory
▶ Pointers are objects (unlike references)
▶ Like reference, pointers can dangle

int* a; // pointer to (mutable) int
const int* a; // pointer to const int
int* const a; // const pointer to (mutable) int
const int* const a; // const pointer to const int

int** e; // pointer to pointer to int

49https://en.cppreference.com/w/cpp/language/pointer

https://en.cppreference.com/w/cpp/language/pointer

132

Address-Of Operator50

▶ Operator &: obtain pointer to object
▶ Opeand must be an lvalue expression, cv-qualification is retained

int a = 10;
int* ap = &a;
const int c = 20;
const int* cp = &c;
int* cp2 = &c; // ERROR: cannot convert const int* to int*

int& r = a; // Reference to a
int* rp = &r; // Pointer to a

50https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_address-of_operator

https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_address-of_operator

133

Indirection Operator51

▶ Operator *: obtain lvalue reference to pointed-to object
▶ Operand must be a pointer, cv-qualification is retained
▶ Also referred to as pointer dereference

int a = 10;
int* ap = &a;
int& ar = *ap;
ar = 20; // a is now 20
*ap = 4; // a is now 4

51https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_indirection_operator

https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_indirection_operator

134

What is Happening? (1)

int main() {

}

0x00001234
0x00001230

00 01 02 03
unknown

return address

Stack Memory

135

What is Happening? (2)

int main() {
int a = 10;

}

0x00001234
0x00001230

00 01 02 03

0a 00 00 00

unknown
return address

a = 100x0000122c

Stack Memory

136

What is Happening? (3)

int main() {
int a = 10;
int b = 123;

}

0x00001234
0x00001230
0x0000122c
0x00001228

00 01 02 03

7b 00 00 00
0a 00 00 00

unknown
return address

a = 10

b = 123

Stack Memory

137

What is Happening? (4)

int main() {
int a = 10;
int b = 123;
int* c = &a;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

2c 12 00 00
7b 00 00 00
0a 00 00 00

unknown
return address

a = 10

b = 123

c = 0x122c

Stack Memory

138

What is Happening? (5)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

2c 12 00 00
7b 00 00 00
2a 00 00 00

unknown
return address

a = 42

b = 123

c = 0x122c

Stack Memory

139

What is Happening? (6)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;
int** d = &c;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

2c 12 00 00
7b 00 00 00
2a 00 00 00

24 12 00 000x00001220

unknown
return address

a = 42

b = 123

c = 0x122c

d = 0x1224

Stack Memory

140

What is Happening? (7)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;
int** d = &c;
**d = 321;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

2c 12 00 00
7b 00 00 00
41 01 00 00

24 12 00 000x00001220

unknown
return address

a = 321

b = 123

c = 0x122c

d = 0x1224

Stack Memory

141

What is Happening? (8)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;
int** d = &c;
**d = 321;
*d = &b;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

28 12 00 00
7b 00 00 00
41 01 00 00

24 12 00 000x00001220

unknown
return address

a = 321

b = 123

c = 0x1228

d = 0x1224

Stack Memory

142

What is Happening? (9)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;
int** d = &c;
**d = 321;
*d = &b;
**d = 24;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

28 12 00 00
18 00 00 00
41 01 00 00

24 12 00 000x00001220

unknown
return address

a = 321

b = 24

c = 0x1228

d = 0x1224

Stack Memory

143

What is Happening? (10)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;
int** d = &c;
**d = 321;
*d = &b;
**d = 24;

return 0;
}

0x00001234
00 01 02 03

unknown

Stack Memory

144

Pointers to References?

Quiz: Why are pointers to references impossible?

A. References are not objects and thus have no address.
B. Would be redundant to pointers to pointers.
C. Taking the address of the referenced object

145

Null Pointers52

▶ Pointer can point to object, or nowhere (null pointer)
▶ Null pointer has special value nullptr
▶ Null pointers of same type are considered as equal
▶ Dereferencing null pointers is undefined behavior

int safe_deref(const int* x) { // just as an example
if (x == nullptr)
return 0;

return *x;
}

52https://en.cppreference.com/w/cpp/language/pointer#Null_pointers

https://en.cppreference.com/w/cpp/language/pointer#Null_pointers

146

Null Pointers

Quiz: Which answer is NOT correct?

int safe_deref2(const int* x) {
int v = *x;
if (x == nullptr)
return 0;

return v;
}

A. The compiler can simply remove the null check.
B. The program might crash when nullptr is passed.
C. The program might return zero.
D. The null check prevents an invalid pointer dereference.

147

Subscript Operator53

▶ Treat pointer as pointer to first element of an array
▶ Follow the same semantics as the array subscript

std::array<int, 3> arr = {12, 34, 45};
const int* ptr = &arr[0]; // pointer to first element, no dereference

for (unsigned i = 0; i < 3; i++)
std::println("{}", ptr[i]);

▶ C-style arrays often implicitly decay to pointers to the first element

int arr[] = {12, 34, 45};
const int* ptr = arr; // pointer to first element

53https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_subscript_operator

https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_subscript_operator

148

Pointer Arithmetic: Addition54

▶ ptr + idx/ptr - idx: move pointer idx elements to left/right
▶ Moves underlying address by idx * sizeof(*ptr)

▶ ptr[idx] equals *(ptr + idx); &ptr[idx] equals7 ptr + idx

std::array<int, 3> arr = {12, 34, 45};
const int* ptr = &arr[1]; // pointer to second element

// prints: 12 45
std::println("{}␣{}", *(ptr - 1), *(ptr + 1));

54https://en.cppreference.com/w/cpp/language/operator_arithmetic#Additive_operators

https://en.cppreference.com/w/cpp/language/operator_arithmetic#Additive_operators

149

Pointer Arithmetic: Past-The-End Pointers

▶ Only valid pointers are allowed to be dereferenced
▶ Pointers shall point to valid objects or be nullptr
▶ Exception: pointer past the end of the last element is allowed
⇝ Constructing out-of-bounds pointers is undefined behavior

std::array<int, 3> arr = {12, 34, 45};
const int* begin = &arr[0]; // OK, points to first element
const int* end = &arr[arr.size()]; // OK, past-the-end pointer

for (const int* p = begin; p != end; ++p) // OK
std::println("{}", p);

int v = *end; // NOT OK: dereferencing past-the-end pointer
int* oobPtr = begin + 4; // NOT OK: pointer out of bounds

150

Pointer Arithmetic: Subtraction

▶ Assuming two pointers ptr1 and ptr2 point into the same array
▶ ptr1 - ptr2 is the number of elements between the pointers

#include <cstddef>
int main() {
int array[3] = {123, 456, 789};
const int* ptr1 = &array[0];
const int* ptr2 = &array[3]; // past-the-end pointer

std::ptrdiff_t diff1 = ptr2 - ptr1; // 3
std::ptrdiff_t diff2 = ptr1 - ptr2; // -3

}

151

String Literals Quiz

Quiz: What is the output of the program?

#include <print>
int main() {
std::println("{}", "Hello!" + 3);

}

A. (compile error) B. (undefined behavior) C. "Hello!3" D. "lo!" E. (an
address)

Don’t use the preprocessor like this, this is primarily for illustration.

152

Void Pointer55

▶ Pointer to void is allowed
▶ Pointers can be implicitly converted to void pointer (retaining cv-quals)
▶ To use void pointer, it must be casted to a different type

▶ Used to pass object of unknown type
▶ Often used in C interfaces (e.g., malloc)
▶ Tentatively avoid in C++

55https://en.cppreference.com/w/cpp/language/pointer#Pointers_to_void

https://en.cppreference.com/w/cpp/language/pointer#Pointers_to_void

153

static_cast56

▶ static_cast<new type>(expression)
▶ Cast expression to “related” type, must be at least as cv-qual’ed

▶ E.g., cast from void pointer to pointer of different type
▶ Many more cases, see reference

int i = 42;
void* vp = &i; // OK, no cast required
int* ip = static_cast<int*>(vp); // OK
long* lp = static_cast<long*>(ip); // ERROR
long* lp = static_cast<long*>(vp); // Undefined behavior!

double d = static_cast<double>(i);

56https://en.cppreference.com/w/cpp/language/static_cast

https://en.cppreference.com/w/cpp/language/static_cast

154

reinterpret_cast57

▶ reinterpret_cast<new type>(expression)
▶ Cast expression to “unrelated” type, reinterpreting bit pattern

▶ Very limited set of allowed conversions
▶ E.g., converting pointer to object to pointer to char or std::byte

▶ Invalid conversions usually lead to undefined behavior

▶ Only use when strictly required! Also avoid C-style casts

57https://en.cppreference.com/w/cpp/language/reinterpret_cast

https://en.cppreference.com/w/cpp/language/reinterpret_cast

155

Strict Aliasing Rule

▶ Object access with an expression of a different type is undefined behavior

⇒ Accessing an int through a float* is not allowed (pointer aliasing)
⇒ Compilers assume that pointers of different types have different values
▶ (There are few exceptions)

float f = 42.0f;
// Undefined behavior!
int i = *reinterpret_cast<int*>(&f);

156

Pointers are Actually Complex

▶ Pointers generally consist of the address of the pointed-to object

▶ But: pointers have more semantic information (provenance58)
▶ Pointers have “information” about the underlying object
▶ Used for compiler optimization

▶ Some hardware platforms have unusual addressing schemes
▶ E.g., CHERI with 128-bit capabilities, basically pointer with bounds and

permissions

58https://www.ralfj.de/blog/2020/12/14/provenance.html

https://www.ralfj.de/blog/2020/12/14/provenance.html

157

Pointers vs. References

Reference Pointer

Usable for passing-by-reference? Yes Yes
Guaranteed non-null? Yes No
Is an object itself? No Yes
Can change which object is referred to? No Yes
Supports pointer arithmetic? No Yes

Recommendation (we will revisit this later):
▶ Prefer references for pass-by-references
▶ Use pointer for: optional references (nullptr), pointer changes object,

pointer arithmetic required, storing references in an array

158

References, Arrays, Pointers – Summary

▶ Value classes lvalues (locations) and rvalues
▶ References are aliases to other objects
▶ Rvalue references extend lifetime of temporary objects
▶ Arrays contiguously store multiple elements of same type
▶ String literals are a special case of an array
▶ Pointers are objects that point to other objects, or nullptr
▶ Pointers support arithmetic
▶ Pointer casts are possible, but are often invalid

159

References, Arrays, Pointers – Questions

▶ Why are arrays of references impossible?
▶ How can the object referenced by a reference be changed?
▶ How to pass an object by-reference in C++?
▶ What is the difference between lvalue and rvalue references?
▶ What is different between const-lvalue and rvalue references?
▶ What is the relation between arrays and pointers?
▶ Which operations on pointers are undefined behavior?
▶ When is using pointer advisable over using a reference?

	References, Arrays, Pointers
	References
	Arrays
	Pointers

