

Cloud-Based Data Processing

Data Centers

Jana Giceva

Datacenter Overview

Data Centers

- Data center (DC) is a physical facility that enterprises use to house computing and storage infrastructure in a variety of networked formats.
- Main function is to deliver utilities needed by the equipment and personnel:
 - Power
 - Cooling
 - Shelter
 - Security
- Size of typical data centers:
 - 500 5000 m2 buildings
 - 1 MW to 10-20 MW power (avg 5 MW)

Example data centers

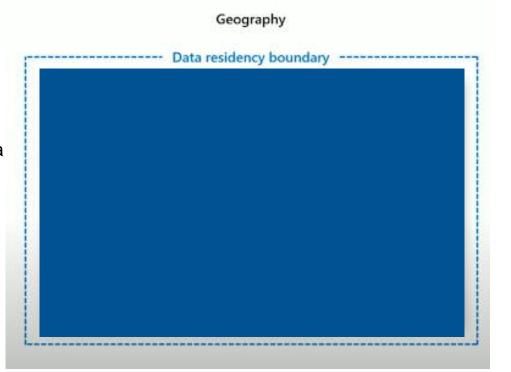
Datacenters around the globe

https://docs.microsoft.com/en-us/learn/modules/explore-azure-infrastructure/2-azure-datacenter-locations

Modern DC for the Cloud architecture

Geography:

- Meets data residency requirements
- Two or more regions
- Fault-tolerant from complete region failures

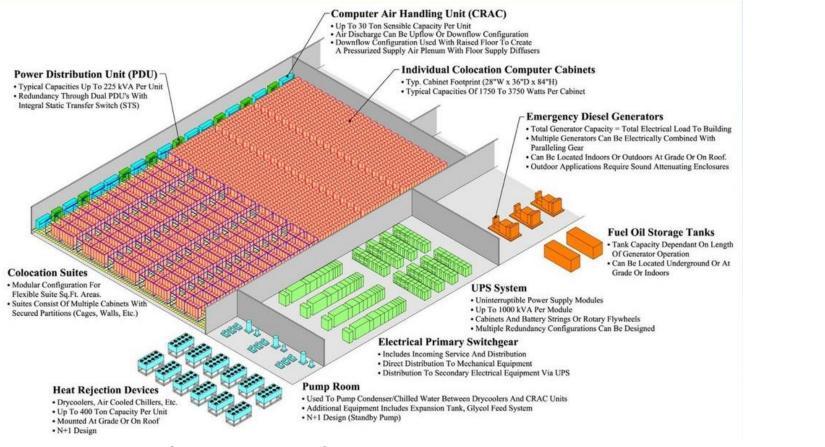

Region:

- Set of datacenters within a metropolitan area
- Network latency perimeter < 2ms

Availability Zones:

- Unique physical locations within a region
- Each zone made up of one or more DCs
- Independent power, cooling, networking
- Inter-AZ network latency < 2ms
- Fault tolerance from DC failure

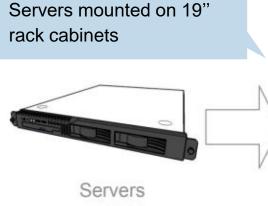
Src: Inside Azure Datacenter Architecture with Mark Russinovich



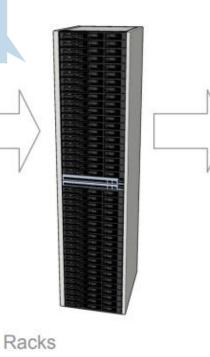
Datacenter Architecture

Main components of a datacenter

src: The Datacenter as a Computer – Barroso, Clidaras, Holzle


ПΠ

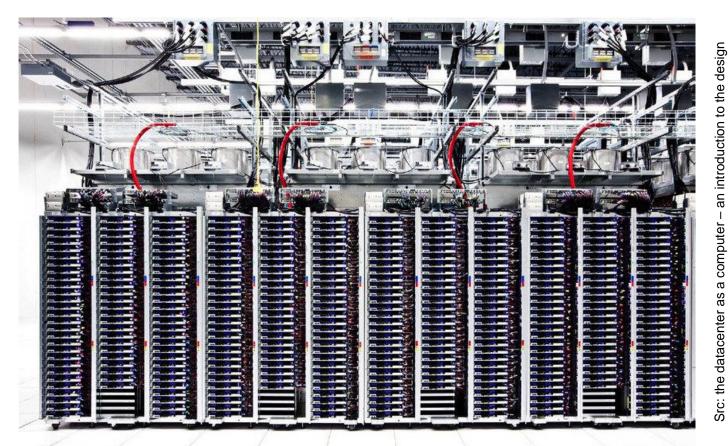
Traditional Data Center Architecture



cluster

server

- CPUs
- DRAM
- Disks

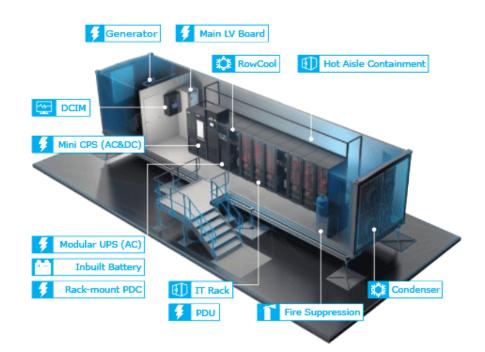

- 40-80 servers
- Ethernet switch

Racks are placed in single rows forming corridors between them.

Clusters

Src: the datacenter as a computer - an introduction to the design of warehouse-scale machines

A Row of Servers in a Google Data Center

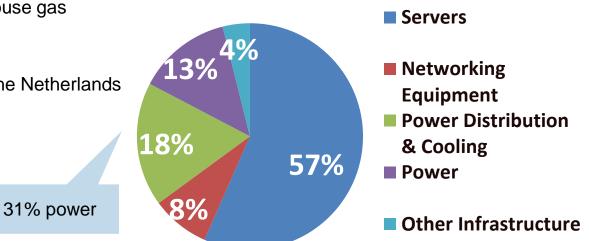


ТΠ

of warehouse-scale machines

Inside a modern data center




- Today's DC use shipping containers packed with 1000s servers each.
- For repairs, whole containers are replaced.

Costs for operating a data center

- DCs consume 3% of global electricity supply (416.2 TWh > UK's 300 TWh)
- DCs produce 2% of total greenhouse gas emissions
- DCs produce as much CO2 as The Netherlands or Argentina

Monthly cost = \$3'530'920

Power Usage Effectiveness (PUE)

PUE is the ratio of

- The total amount of energy used by a DC facility
- To the energy delivered to the computing equipment

PUE is the inverse of data center infrastructure efficiency

Total facility power = covers IT systems (servers, network, storage) + other equipment (cooling, UPS, switch gear, generators, lights, fans, etc.)

Achieving PUE

Location of the DC – cooling and power load factor

Raise temperature of aisles

- Usually 18-20 C; Google at 27 C
- Possibly up to 35 C (trade off failures vs. cooling costs)

Reduce conversion of energy

E.g., Google motherboards work at 12V rather than 3.3/5V

Go to extreme environments

- Arctic circle (Facebook)
- Floating boats (Google)
- Underwater DC (Microsoft)

Reuse dissipated heat

Price per Kilo Watt Hour		Possible Reason Why
3.6 cents	Idaho	Hydroelectric Power; Not Sent Long Distance
10.0 cents	California	Electricity Transmitted Long Distance over the Grid; Limited Transmission Lines in the Bay Area; No Coal Fired Electricity Allowed in California.
18.0 cents	Hawaii	Must Ship Fuel to Generate Electricity

Evolution of data center design

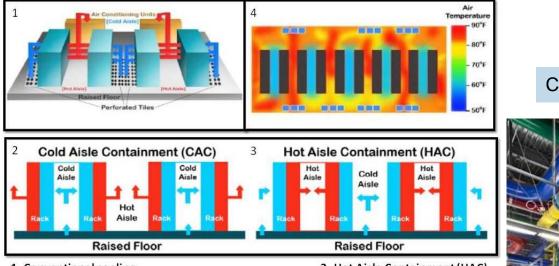
https://www.nextplatform.com/2016/09/26/rare-tour-microsofts-hyperscale-datacenters/

Evolution of datacenter design

Datacenter generations

- Gen 6: scalable form factor (2017)
 - Reduced infrastructure, scale to demand
 - 1.17-1.19 PUE

Gen 7: Ballard (2018)


- Design execution efficiency
- Flex capacity enabled
- 1.15-1.18 PUE
- Gen 8: Rapid deploy datacenter (2020)
 - Modular construction and delivery
 - Equipment skidding and preassembly
 - Faster speed to market
 - Project Natick (future) 1.07 PUE or less

Datacenter Challenges

Challenge 1: Cooling data centers

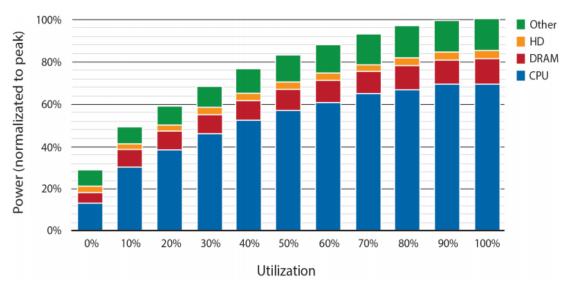
1- Conventional cooling

2- Cold Aisle Containment (CAC)

3- Hot Aisle Containment (HAC)4- Thermal modelling

Cooling plant at a Google DC in Oregon

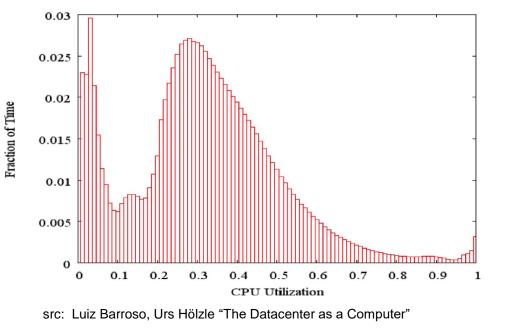
Challenge 2: Energy Proportional Computing


Average real world DC and servers are too inefficient.

- waste 2/3+ of their energy

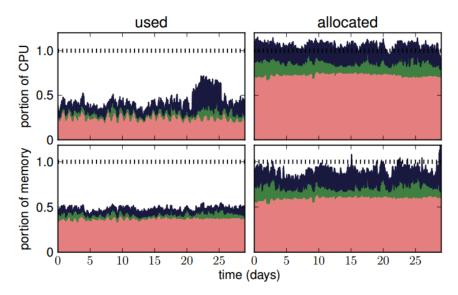
Energy consumption is not proportional to the load

- CPUs are not so bad but the other components are
- CPU is the dominant energy consumer in servers – using 2/3 of energy when active/idle.
- Try to optimize workloads
- Virtualization and consolidation.


Sub-system power usage in an x86 server as the compute load varies from idle to full (reported in 2012).

src: "The Datacenter as a Warehouse Computer"

Challenge 3: Servers are idle most of the time


- For non-virtualized servers 6-15% utilization
- Server virtualization can boost to an average 30% utilization
- Need for resource pooling and application and server consolidation
- Need for resource virtualization
- Latest trends: resource disaggregation (e.g., memory stranding → memory pooling).

Challenge 4: Efficient monitoring

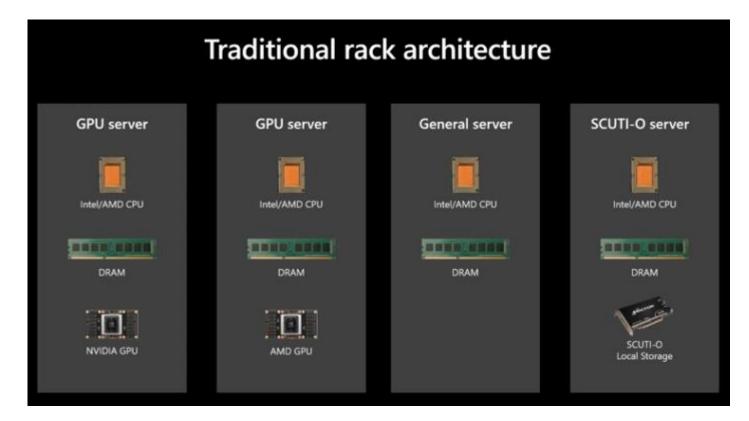
- Even with virtualization and software defined DC, resource utilization can be poor.
- Need for efficient monitoring (measurement) and cluster management.
- Goal to meet SLOs.
- Job's tail latency matters!

src: "Heterogeneity and dynamicity of clouds at scale: Google trace analysis" SoCC'12

Improving resource utilization

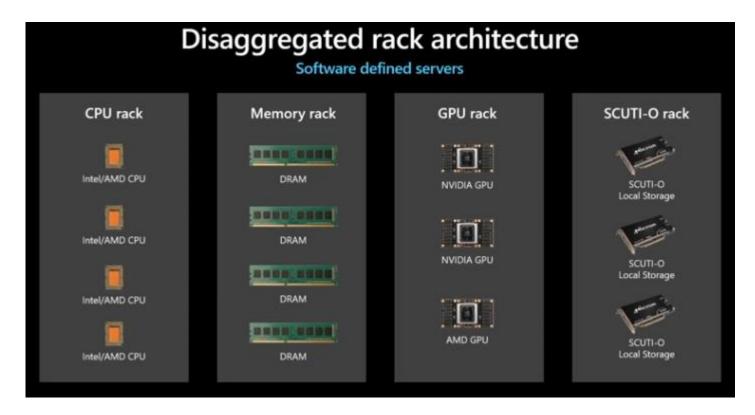
Hot topic for research and industry at the moment!

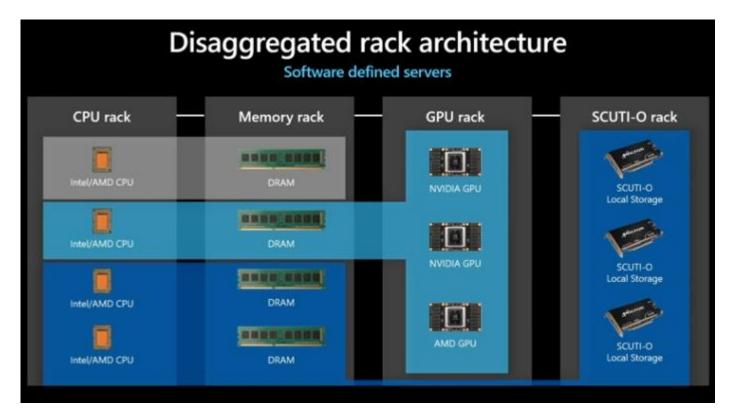
Hyper-scale system management software


- Treat the datacenter as a warehouse scale computer
- Software defined datacenters
- Compose a system using pooled resources of compute, network, and storage based on workload requirement

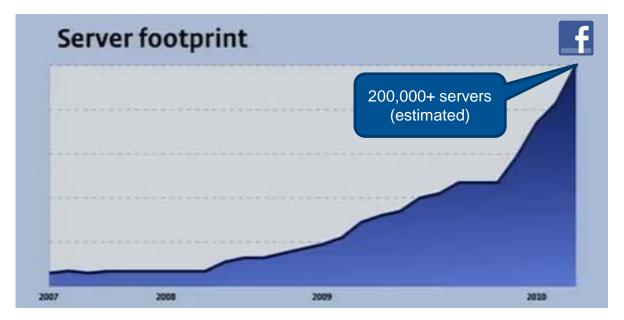
Dynamic resource allocation

- Virtualization is not enough to improve efficiency
- Dynamically allocate CPU resources across servers to address the shifting demand
- Drive 100-300% better utilization for virtualized WLs, and 200-600% for bare-metal WLs.


Software defined DCs


Disaggregation across racks

Software defined Servers



Challenge 5: Managing scale and growth

- In 2016, Gartner estimated that Google has 2.5 million servers
- In 2021, Microsoft Azure was reported to have more than 4 million servers in operations globally.

Challenge 6: networking at scale

[David Samuel Robbins, gettyimages.ch]

[@AlexCWheeler, Twitter]

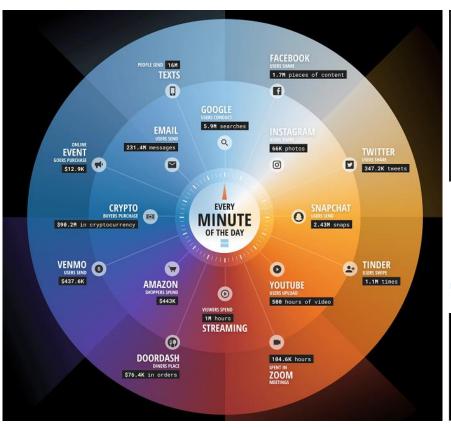
Challenge 6: networking at scale (cont.)

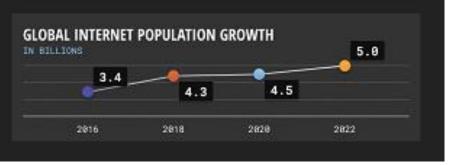
ЛШ

Building the right abstractions to work for a range of workload at hyper-scale.

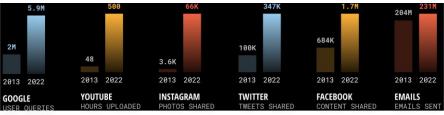
Software Defined Networking (SDN)

Within DC, 32 billion GBs were transported in 2020


- src: Cisco's report 2016-2020
- "Machine to machine" traffic is orders of magnitude larger than what goes out on the Internet
 - Src: Jupiter Rising: A Decade of Clos Topologies and Centralized control in Google's Datacenter network (ACM SIGCOMM'15)
- Evolution via optical circuit switches and SDN
 - Src: Jupiter Evolving: Transforming Google's Datacenter Network via Optical Circuit Switches and SDN (ACM SIGCOMM'22)



Cloud Computing Overview


Big Data and the need for Cloud

- Over the last 10 years digital engagement, streaming content, online purchasing, p2p payments, etc. have risen by orders of magnitude.
- Src: https://www.domo.com/data-never-sleeps

Cloud and Cloud computing

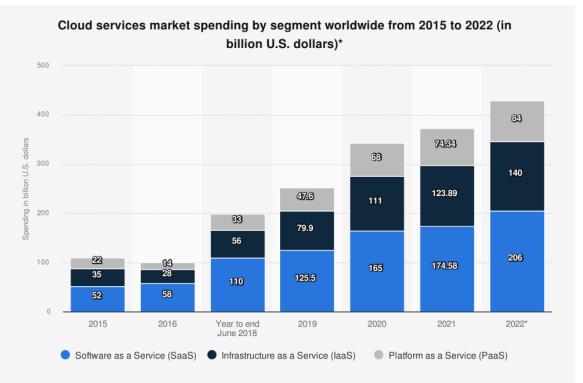
Datacenter hardware and software that the vendors use to offer the computing resources and services.

- The cloud has a large pool of easily usable virtualized computing resources, development platforms, and various services and applications.
- Cloud computing is the delivery of computing as a service.
- The shared resources, software, and data are provided by a provider as a metered service over a network.

Cloud Computing

Datacenters are vendors that rent servers or other computing resources (e.g., storage)

- Anyone (or company) with a "credit card" can rent
- Cloud resources owned and operated by a third-party (cloud provider).


Fine-grained pricing model

- Rent resources by the hour (or by the minute) or by I/O
- Pay as you go (pay for only what you use)

Can vary capacity as needed

- No need to build you own IT infrastructure for peak loads
- Can reserve fixed pools of servers ahead of time, rent them as needed, or a combination of both.

Cloud market revenue in billions of dollars

Source ITCandor Additional Information: Worldwide: ITCandor: 2015 to 2022 пп

Cloud service models (XaaS)

more control less

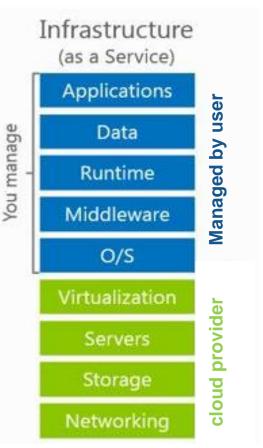
Infrastructure as a Service (laaS)

Rent IT infrastructure – servers and virtual machines (VMs), storage, network, firewall, and security

Platform as a Service (PaaS)

Get on-demand environment for development, testing and management of software applications: servers, storage, network, OS, databases, etc.

Serverless, Function as a Service (FaaS)


- Overlapping with PaaS, serverless focuses on building app functionality without managing the servers and infrastructure required to do so.
- Cloud vendors provides set-up, capacity planning, and server management.

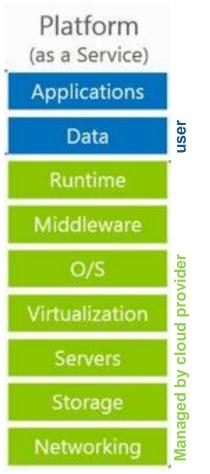
Software as a Service (SaaS)

- Deliver software applications over the Internet, on demand.
- Cloud vendor handles software application and underlying infrastructure

Infrastructure as a Service

- Immediately available computing infrastructure, provisioned and managed by a cloud provider.
- Computing resources pooled together to server multiple users / tenants.
- Computing resources include: storage, processing, memory, network bandwidth, etc.

ПΠ


Platform as a Service

Complete development and deployment environment.

Includes system's software (OS, middleware), platforms, DBMSs, BI services, and libraries to assist in development and deployment of cloud-based applications.

• What is serverless computing then?

ПП

Software as a Service

In addition to the cross references provided in the slides.

Some material based on:

- Lecture notes from "Scalable Systems for the Cloud" by Prof. Giceva at Imperial
- Lecture notes from "Modern Data Center Systems" by Prof. Zhang at UC San Diego
- Book "The Datacenter as a Computer An Introduction to the Design of Warehouse-scale Machines" by Luiz Andre Barroso, Jimmy Clidaras, Urs Holzle
- Talk "Inside Azure Datacenter Architecture" with Mark Russinovich (Azure CTO)
- Paper "Above the Clouds: A Berkeley View of Cloud Computing"
- Web-pages from Amazon AWS, Microsoft Azure and Google CDP