
Seminar: Techniques for
implementing main memory data

bases
Text analysis: TF-IDF

Dao Thuy Ngan Tran

23. Oktober 2017

TF-IDF has been a reliable model for term weighting in infor-
mation retrieval. Full-text searches in data bases is among others
an application of TF-IDF. In order to optimize query results, ad-
justments to the original model were made over the years, be it to
encounter undesired effects of long documents or to determine the
optimal result set of the query.

1 Overview

One of the state-of-the-art methods in information retrieval is the BM25 model,
which has its roots in probabilistic modeling and has been proven to be a relia-
ble means. Robertson outlined in 2004 that the mechanism behind the BM25
concept actually can be expressed as a TF-IDF weighting scheme, proving its
subtle relevance in the field [4].
In 1972, Jones first introduced a new heuristic for weighing terms in informa-

tion retrieval. As of then, term frequency was already known as a term weighing
scheme. Jones outlined how the growing size of a document collection also redu-
ced the specificity of a term. Hence, the inverse document frequency was concei-
ved to diminish the weight of terms that occur in many documents throughout
the collection. The term frequency and the inverse document frequency were
combined to create a back then new weighing term heuristic [1].
Using the base TF-IDF model, other adjustments were introduced in more

recent models in order to counter effects which appear through the difference
between document collections, one of them, by Jiaul H. Paik, viewed in detail in
this paper [2]. The same model also shows a way to apply TF-IDF to information
retrieval by proposing a document ranking formula.
Tata et al. [3] additionally demonstrate an algorithm to use TF-IDF and

cosine similarity to determine selectivity of a full-text search.
Finally, this work will deal with a new approach to TF-IDF, which does not

introduce a modification to the algorithm itself but rather the target document

1

collection used for weighing the query terms [5].

2 Standard TF-IDF

Stephen Robertson [4] pools all variants of TF-IDF into a class of TF-IDF based
weighting schemes. This means that all those schemes use the idea of TF-IDF
as a base and look for ways to improve different aspects of the full-text search
like the term weight itself or properties of the document collection.

2.1 Term Frequency

Term frequency (TF) as a measure of retrieving information is a commonly
used heuristic. It denotes a term weighing means depending on the number of
times a term occurs in a document. The simplest variant of this weight is the
raw count of the term per document [4]. A term’s weight therefor increases with
every single occurrence in each document of the collection. This measure is to be
generated for each term in the query and each document in the target document
collection the search is performed on.
The C++ Code 1 shows the implementation the base TF model.

1 map<string , int> index (string fileName) {
2 map<string , int> index ;
3 map<string , int >: : iterator it ;
4 ifstream file ;
5 file . open (fileName , ifstream : : in) ;
6 i f (file . is_open ()) {
7 string word = "" ;
8 whi le (file . good ()) {
9 i f (isalnum (file . peek ()) !=0){

10 word += tolower (file . get ()) ;
11 } e l s e {
12 it = index . find (word) ;
13 i f (it !=index . end ()) {
14 it−>second++;
15 } e l s e {
16 index . insert (pair<string , int >(word , 1)) ;
17 }
18 word = "" ;
19 file . get () ;
20 }
21 }
22 file . close () ;
23 re turn index ;
24 }
25

26 i n t termFrequency (string term , string documentName) {
27 string filename = collectionPath + documentName ;
28 map<string , int> indexDoc = index (filename) ;
29 map<string , int >: : iterator it = indexDoc . find (term) ;
30 i f (it !=indexDoc . end ()) {
31 re turn it−>second ;
32 } e l s e {

2

33 re turn 0 ;
34 }
35 }

Code Snippet 1: Term Frequency

2.2 Inverse Document Frequency

Karen Spärck Jones first observed and published this heuristic in 1972 after
observing the specificity of search terms in large document collections. She rea-
lized that if a term is found in too many documents, it is unlikely relevant for
the specific query. It is thus to be assigned a lower inverse document frequency
(IDF) value than terms which are less frequently found throughout the docu-
ment collection [1]. The classification as a heuristic is used because there was no
mathematical way to prove the inverse document frequency as right or wrong
back then. Still, the application proved it to be nowadays essential in informa-
tion retrieval. The base equation is shown in equation 1, with ti as the term at
index i in our query, N as the number of documents in the collection and ni as
the number of documents in which ti occurs in at least once.

idf(ti) = log(
N

ni
) (1)

Robertson published a paper in 2004, acknowledging the indispensability of
Jones’ finding and producing a link between Shannon’s theory of informati-
on and communication. Based on Shannon’s entropy formula, the information
amount of an individual message in a channel of communication can be inter-
preted as in equation 2, with Ii as the information amount of the individual
message i and pi as the probability for the individual message to be transmitted
in the channel.

Ii = −log(pi) (2)

Using equation 2, Robertson and Spärck Jones created the relevance weigh-
ting model (RSJ) in 1976, based on different assumptions about the number of
documents relevant to our search in the collection. In the end, the most like-
ly setup for our search is that we do not know how many documents will be
relevant, leading to the RSJ depiction as in equation 3. wi denotes the weight
of query term i while N and ni again denote the number of documents in the
collection and the number of documents query term i occurs in, respectively.

wi = −log(
N + 0.5

ni + 0.5
) (3)

IDF is hereby a a simplified version of the RSJ weight [4].
The following code snippet 2 shows the implementation of the IDF.

1 double idf (string term , vector<string> collection) {
2 f l o a t documentFrequency = 0 ;
3 f o r (i n t i = 0 ; i < collection . size () −1; i++){

3

4 i f (termFrequency (term , collection [i]) > 0) {
5 documentFrequency++;
6 }
7 }
8 double result =
9 log ((double) collection . size () /(double) documentFrequency) ;

10 re turn result ;
11 }

Code Snippet 2: Term Frequency

3 Document Ranking using TF-IDF

In 2013, Jiaul H. Paik identified several drawbacks of the base TF-IDF scheme.

3.1 Two Factor Frequency

He realized that a linearly growing TF value does not properly reflect the re-
levance of a term and summarized the necessary properties of the TF value
as

1. F ′
t(TF) > 0

2. F ′′
t (TF) < 0.

Put into words, this means that the resulting TF value should grow with each
increase of the raw TF count but that the growth factor itself should decrease
at the same time.
Another problem with the raw TF count is the bias towards longer documents,

which have an overall higher word count and therefor an increased probability
for term term occurrence.
Paik additionally pursued the idea that the term frequencies within a docu-

ment are dependent from another in order to determine the relevance of the
query term within this document. This hypothesis puts a term frequency in-
to relation to the average term frequency within a document, thus pinpointing
whether a term is relatively relevant to the document compared to the other
terms.
Combining this hypothesis with the requirements stated for the TF value, the

formula 4 for the Relative Intra-document TF was conceived.

RITF (t,D) =
ld(1 + TF (t,D)

ld(1 +AverageTF (D)
(4)

with t as the term for which we want to find the relative TF and D as the
target Document. The logarithm is used to damp the otherwise linear growth
of the TF and thus fulfill the requirement F ′′

t (TF) < 0. Effectively, this factor
rewards terms and documents where a term seems to be essential to the docu-
ments content (a possible ’elite’ term for a document, meaning that a document
is äboutẗhe concept that is represented by a term [4]).

4

Equation 5 shows the TF variant Length Regularized TF constructed to coun-
ter the before mentioned undesirable effect of TF in long documents. This means
that the longer a document is in relation to the average document length in a
collection, the more it is punished.

LRTF (t,D) = TF (t,D) · ld(1 + AverageDocumentLength(C)

length(D)
) (5)

with the same variables like the RITF equation (4) and C as the document
collection. In order to upper bound both factors to 1, the function f(x) = x

1+x
is used to result in the two equations BRITF (t,D) (6) and BLRTF (t,D) (7):

BRITF (t,D) =
RITF (t,D)

1 +RITF (t,D)
(6)

and

BLRTF (t,D) =
LRTF (t,D)

1 + LRTF (t,D)
(7)

.
The next step is combining those two TF factors into one by assigning the

weights w and 1−w respectively as shown in equation 8. The weight w is chosen
as w = 2

1+ld(1+|Q|) with |Q| as the query length. This weight is chosen in order to
increase with the query’s length, since the document length should be punished
less. This notion holds because long documents are more likely to contain all
words of a query than shorter ones.

TFF (t,D) = w ·BRITF (t,D) + (1− w) ·BLRTF (t,D) (8)

.

3.2 Modification of IDF

The regular IDF does not discriminate between documents that only mention a
query term and documents in which a query is elite. To achieve this differentia-
tion, the factor average elite set TF (AEF) is introduced as

AEF (t, C) =
CTF (t, C)

DF (t, C)
(9)

.
with CTF (t, C) as the total occurrence of the term in the document collection.

Equation 10 finally shows the modified IDF as it is intended to be applied, with
the AEF weight upper bounded to 1.

newIdf(t, C) = IDF (t, C) · AEF (t, C

1 +AEF (t, C)
(10)

.

5

3.3 Ranking Model

After performing adjustments to the base models, the new TF-IDF values can
be used to evaluate the relevance of each document in the document collection.
The following C++-Code snippet 3 shows the implementation of the Similarity
Score, which determines the document with the highest similarity to the query
and therefor serves as the best match.

1 pair<string , double> bestMatch (vector<string> query , vector<←↩
string> collection) {

2 pair<string , double> documentScores ("" , 0 . 0) ;
3 f o r (i n t j = 0 ; j < collection . size () ; j++){
4 f o r (i n t i = 1 ; i < query . size () ; i++){
5 double temp =
6 tff (query [i] , collection [j] , query . size ()) ∗ tdf (query [i] , ←↩

collection) ;
7 simScore += temp ;
8 }
9 i f (simScore > get<1>(documentScores) && ! isnan (simScore)) {

10 get<0>(documentScores) = collection [j] ;
11 get<1>(documentScores) = simScore ;
12 }
13 re turn documentScores ;
14 }

Code Snippet 3: Similarity Score

The similarity scores are computed by determining the TF-IDF values per
document and query first and then adding up all TF-IDF values for the query
up for one document which then yields the similarity Score [2].

4 Using TF-IDF for Selectivity Estimation

Other than using the before described similarity score based on cumulative TF-
IDF values, Sandeep Tata and Jignesh M. Patel first used cosine similarity to
determine the similarity between a query and a target document collection. In
this case, the target document collection is an actual data base where each row
represents a document. The cosine similarity is determined using dot product.
Based on the the individual properties of each date base, the goal is to esti-
mate the selectivity of TF-IDF, meaning how many rows will be approximately
returned using the TF-IDF algorithm.

4.1 Summary Structure

The summary structure introduced by Paik et al. is used to determine the TF-
IDF vector characteristical to the database. The idea behind this method is to
obtain the probability distribution function within the rows of a data base. This
can be viewed as the TF-IDF property of the average row in the database and
hence denote the overall similarity of the data base to the given query.
It is possible to use cosine similarity for query/data base similarity if a query

is viewed as a a vector with each entry as its own dimension. In order to properly

6

Row Token 1 weight ... Token i weight ... Token N weight
1 w1

1 ... w1
i ... w1

N

...
j wj

1 ... wj
i ... wj

N

...
M wM

1 ... wM
i ... wM

N

µ1, σ1, C1 ... µi, σi, Ci .. µN , σN , CN

Tabelle 1: Summary Structure for Cosine Similarity

compare query and data base, the same dimensions have to be used for the TF-
IDF vector and the data base vectors. After creating the vectors, the dot product
is computed, yielding a float between 0 and 1 with 1 for identical vectors and 0
as orthogonal vectors.
Table 1 shows the concept of the summary structure as intended by Tata et al.

consisting of the TF-IDF vectors with an additional row containing the values
µi, σi and Ci. Hereby the data base has M rows while there are N distinct
terms (tokens) in the whole database. The TF-IDF weight is determined for
each token and every row, and is only > 0 if the token actually is contained in
the row. The last row is defined as:

1. µi is the mean over all weights in column i 6= 0

2. σ is the standard deviation over all weights in column i 6= 0

3. Ci is the probability that column i 6= 0, namely the number of entries
in this column divided by M . This can also be viewed as the document
frequency.

4.2 Algorithm ES and EL

After obtaining the mean, standard deviation and document frequency, the co-
sine similarity between the TF-IDF vector the data base can be computed. Tata
et al. have constructed two estimating algorithms, ES and EL, which both com-
pute mean and standard deviation. This is done by calculating the dot product
between the last row values of the data base and the TF-IDF query vector u as
shown in 11 and 12.

µnew =

N∑
i=1

(µi · Ci · ui) (11)

.

σnew =

N∑
i=1

(σi · Ci · ui) (12)

.

7

Algorithm ES additionally adds the factors α and β which are scaling con-
stants to account for the deviation from the actual mean and standard deviation
of the data base. Determining those factors requires training sets and several
runs of the algorithm.
Algorithm EL, on the other side, uses an additional step where all parameters

are modified by a training function to improve the estimate.
Through experimentation, the approximate distribution of TF-IDF values was

found to be closest to an inverse normal distribution. This distribution takes
µnew and σnew as parameters to return the database specific distribution which
is then used to provide an estimate for the query selectivity.
Even though both algorithms use components adjusted by training sets, al-

gorithm EL proved to be slightly more accurate in test runs than algorithm ES
in predicting a query’s selectivity on a given data base [3].

5 Conclusion and Outlook

We can conclude that the TF-IDF model, even though conceived several decades
ago, still holds great relevance in information retrieval research and has been
subject to improvements in all aspects over the years. What started out as a
heuristic from Jones proved to be a versatile and useful model currently imple-
mented in data bases. Efficiency and resourcefulness becomes more important
with every day, especially with main memory data bases.
One of the latest innovations in 2017 regarding TF-IDF is called TF-IDuF

which does not modify the algorithm itself but the target document collection
by determining TF-IDF values based on the personal document collection of
the user. This gives a personal preference to the query, envisioning that each
individual user is looking for different results for similar queries. The practical
application intends to combine the TF-IDF weights based on the target docu-
ment collection with the weights based on the personal collection [5].
This again shows how the TF-IDF model keeps evolving and adjusting to

different purposes while the main idea still remains the same.

Literatur

[1] Karen Spärck Jones. A STATISTICAL INTERPRETATION OF TERM
SPECIFICITY AND ITS APPLICATION IN RETRIEVAL, Journal of Do-
cumentation, Vol. 28 Issue: 1, pp.11-21, 1972

[2] Jiaul H. Paik. A Novel TF-IDF Weighting Scheme for Effective Ranking,
ACM, 2013

[3] Sandeep Tata, Jignesh M. Patel. Estimating the Selectivity of tf-idf based
Cosine Similarity Predicates, SIGMOD Record (Vol. 36, No. 2), June 2007

[4] Stephen Robertson. Understanding inverse document frequency: on theore-
tical arguments for IDF, Journal of Documentation, Vol. 60 Issue: 5, pp.503-
520, 2004

8

[5] Joeran Beel, Stefan Langer, Bela Gipp. TF-IDuF: A Novel Term-Weighting
Scheme for User Modeling based on Users’ Personal Document Collections,
Proceedings of the iConference 2017, Wuhan, China, 2017

9

