
1 / 28

Parallelization on Multi-Core CPUs

Parallelization on Multi-Core CPUs

2 / 28

Parallelization on Multi-Core CPUs

Amdahl’s Law

• suppose we parallelize an algorithm using n cores and p is the proportion of the task that
can be parallelized (1 − p cannot be parallelized)

• the speedup of the algorithm is
1

(1−p)+ p
n

• assuming infinite parallelism, the speedup is
1

(1−p)

• for example, if 90% of the work is parallelized, the maximum speedup is only 10
• one should make sure that every phase of one’s algorithm that depends on the input data

size is parallelized

3 / 28

Parallelization on Multi-Core CPUs

Parallelization Constructs and Libraries

• low-level: C++ threads, pthreads (threads, mutexes, barriers, condition variables)
• parallel patterns: parallel reduce, parallel for, fork/join parallelism
• parallel frameworks: TBB, OpenMP, Cilk Plus

4 / 28

Parallelization on Multi-Core CPUs

Intel Thread Building Blocks

• Open Source library for parallelism and concurrency
• fairly nice for prototyping
• manages a pool of worker threads
• implements work stealing
• provides high-level abstractions
• enables nested parallelism
• large systems (e.g., database systems) will have their own framework

5 / 28

Parallelization on Multi-Core CPUs

Thread-Local Storage

• in C++ variables can be annotated as thread_local (each thread has its own copy)
• however, sometimes it would be convenient to access the thread-local state of other threads
• tbb::enumerable_thread_specific allows this

6 / 28

Parallelization on Multi-Core CPUs

Parallel Reduce

tbb :: parallel_reduce (
tbb :: blocked_range <uint64_t >(0, n), // range
0ull , // identity
[&](const tbb :: blocked_range <uint64_t >& r, uint64_t init) {

// accumulate
for (uint64_t i=r.begin (); i!=r.end (); i++)

init += array[i];
return init;

},
[] (uint64_t x, uint64_t y) { return x+y; }); // combine

tbb :: blocked_range (Value begin , Value end , size_type grainsize =1);

7 / 28

Parallelization on Multi-Core CPUs

Parallel For

tbb :: parallel_for (tbb :: blocked_range <uint64_t >(0, n),
[&](const tbb :: blocked_range <uint64_t >& r) {

for (uint64_t i=r.begin (); i!=r.end (); i++)
array[i] *= 2;

});

8 / 28

Parallelization on Multi-Core CPUs

Partitioners

• parallel_for and parallel_reduce split the given range to enable parallel execution
• there are multiple builtin partitioners:

I static_partitioner splits work equally among threads up-front (no dynamic work stealing)
I simple_partitioner splits the range as much as possible (e.g., until grainsize is reached)
I auto_partitioner heuristic similar to simple_partitioner, but tries to avoid creating too

many ranges (default)

9 / 28

Parallelization on Multi-Core CPUs

Fork/Join Parallelism

• sometimes the amount of work to parallelize is not known upfront
• fork/join allows one to perform work on other threads (“fork”), and then to wait until these

tasks are finished (“join”)
• often recursive parallelism structure

10 / 28

Parallelization on Multi-Core CPUs

Naive Merge Sort with Fork/Join (TBB)

const ptrdiff_t limit = 1024;

template <class Iter >
void merge_sort (Iter first , Iter last) {

if (last - first > limit) {
Iter middle = first + (last - first) / 2;
tbb :: task_group g; // alternative : tbb :: parallel_invoke
g.run ([&]{ merge_sort (first , middle); });
merge_sort (middle , last);
g.wait ();
std :: inplace_merge (first , middle , last);

} else {
merge_sort_serial (first , last);

}
}

11 / 28

Parallelization on Multi-Core CPUs

Analysis

• What is the maximum speedup (with infinite cores) for sorting n elements?
• serial execution: log2(n) · n
• rough upper bound:

I the final merge is serial: n
I lower bound for fraction of serial part n

log2(n)·n = 1
log2(n)

I using Amdahl’s law the maximum speedup is 1
1

log2(n)
= log2(n)

I for example, if n = 220 the upper bound is log2(n) = 20
• better upper bound:

I parallel execution:
∑log2(n)−1

i=0
n
2i = n + n

2 + n
4 + · · · < 2n

I for example, if n = 220 the upper bound is
20n
2n = 10

• (both analyses assume that each level recursion level takes the same amount of time, which
is not quite true in reality)

12 / 28

Parallelization on Multi-Core CPUs

Speedup, n = 220

1

1.76

2.77

3.36

4.02

4.61

1

2

3

4

1 2 4 6 8 10
threads

sp
ee

du
p

13 / 28

Parallelization on Multi-Core CPUs

Speedup with 10 Threads

0.96 1 0.91

2.13

3.11

4.17
4.41 4.36

5.03
5.44 5.41

1

2

3

4

5

28 212 216 220 224 228

data size [log scale]

sp
ee

du
p

14 / 28

Parallelization on Multi-Core CPUs

Parallelization Overhead, n = 220

0.00

0.05

0.10

0.15

21 25 210 215 220

limit [log scale]

tim
e

[s
] threads

1

10

15 / 28

Parallelization on Multi-Core CPUs

Parallel Merge (1)

template < typename It >
void parallelMerge (It begin1 , It end1 , It begin2 , It end2 , It out) {

tbb :: parallel_for (ParallelMergeRange <It >(begin1 , end1 , begin2 , end2 , out),
[&](ParallelMergeRange <It >& r) {

std :: merge(r.begin1 , r.end1 , r.begin2 , r.end2 , r.out); },
tbb :: simple_partitioner ());

}

template < typename It >
struct ParallelMergeRange {

It begin1 , end1 , begin2 , end2 , out;

bool empty () const { return (end1 - begin1) + (end2 - begin2)==0; }

bool is_divisible () const {
return std :: min(end1 -begin1 , end2 - begin2) > limit; }

ParallelMergeRange (It begin1_ , It end1_ , It begin2_ , It end2_ , It out_) :
begin1 (begin1_), end1(end1_), begin2 (begin2_), end2(end2_), out(out_) {}

16 / 28

Parallelization on Multi-Core CPUs

Parallel Merge (2)

ParallelMergeRange (ParallelMergeRange & r, tbb :: split) {
if (r.end1 -r. begin1 < r.end2 -r. begin2) {

// first range should be the larger one
std :: swap(r.begin1 , r. begin2);
std :: swap(r.end1 , r.end2);

}
It m1 = r. begin1 + (r.end1 -r. begin1)/2;
It m2 = std :: lower_bound (r.begin2 , r.end2 , *m1);
begin1 = m1;
begin2 = m2;
end1 = r.end1;
end2 = r.end2;
out = r.out + (m1 -r. begin1) + (m2 -r. begin2);
r.end1 = m1;
r.end2 = m2;

}
}; // struct ParallelMergeRange

17 / 28

Parallelization on Multi-Core CPUs

Parallel Out-Of-Place Merge Sort

template <class It >
void parallelMergeSort (It first , It last , It out , bool inplace =false) {

if ((last -first) < limit) {
merge_sort_serial (first , last);
if (! inplace)

std :: move(first , last , out);
} else {

It mid = first + (last -first)/2;
It outMid = out + (mid -first);
It outLast = out + (last -first);
tbb :: parallel_invoke (

[&]() { parallelMergeSort (first , mid , out , ! inplace); },
[&]() { parallelMergeSort (mid , last , outMid , ! inplace); });

if (inplace)
parallelMerge (out , outMid , outMid , outLast , first);

else
parallelMerge (first , mid , mid , last , out);

}
}

18 / 28

Parallelization on Multi-Core CPUs

Scalability, n = 220

0

25M

50M

75M

100M

1 2 4 6 8 10
threads

ite
m

s/
s

method
in-place

out-of-place

19 / 28

Parallelization on Multi-Core CPUs

HyPer’s Parallel Merge Sort
1. divide input data statically, each thread sorts its fraction
2. determine separators, compute output positions (prefix sums)
3. merge into output array

Compute global separators

from the local separators

mergemerge merge

local 1/3

global 1/3 global 2/3

local 2/3

so
rt

so
rt

so
rt

in
-p
la
ce

20 / 28

Parallelization on Multi-Core CPUs

Pitfalls in Parallel Code

• non-scalable algorithm
I re-think algorithm

• load imbalance
I break work into smaller tasks, dynamically schedule these between threads

• task overhead: managing tasks takes more time than the actual work
I set a minimum per-thread tasks size (not too small, not to large)

21 / 28

Parallelization on Multi-Core CPUs

Volcano-Style Parallelism

• plan-driven approach:
I optimizer statically determines at query compile time how many threads should run
I instantiates one query operator plan for each thread
I connects these with exchange operators, which encapsulate parallelism and manage threads

• Elegant model which is used by many systems

XchgHashSplit(3:3)

v

R1

v

R2

v

R3

r r r

Xchg(3:1)

r

v

R

22 / 28

Parallelization on Multi-Core CPUs

Volcano-Style Parallelism (2)

+ operators are largely oblivious to parallelism
− static work partitioning can cause load imbalances
− degree of parallelism cannot easily be changed mid-query
− overhead:

I thread oversubscription causes context switching
I hash re-partitioning often does not pay off
I exchange operators create additional copies of the tuples

23 / 28

Parallelization on Multi-Core CPUs

Morsel-Driven Query Execution (1)
• break input into constant-sized work units (“morsels”)
• dispatcher assigns morsels to worker threads
• # worker threads = # hardware threads
• operators are designed for parallel execution

A
16

18
27

5

7

B
8

33
10

5

23

B
8
33
10

5

23

C
v
x
y

z

u

HT(S)HT(T)

A
16
7
10
27
18
5
7
5
...
...
...
...
...

Z
a
c
i
b
e
j
d
f
...
...
...
...
...

RZ
a
...
...

A
16
...
...

B
8
...
...

C
v
...
...

Result

store
probe(16)

probe(10)

probe(8)

probe(27)store

Z
b
...
...

A
27
...
...

B
10
...
...

C
y
...
...

morsel

morselDispatcher

24 / 28

Parallelization on Multi-Core CPUs

Pipeplines

• each pipeline is parallelized individually using all threads

BB

BA

S R

v vT

v

24 / 28

Parallelization on Multi-Core CPUs

Pipeplines
• each pipeline is parallelized individually using all threads

BB

BA

S R

v vT

v

Build HT(T)

Pipe 1

Scan T

Pipe 1

Scan T

Pipe 1

Scan T

vvv

24 / 28

Parallelization on Multi-Core CPUs

Pipeplines
• each pipeline is parallelized individually using all threads

BB

BA

S R

v vT

v

Build HT(S)

Build HT(T)

Pipe 2

Scan S

Pipe 2

Scan S

Pipe 2

Scan S

vv
v

24 / 28

Parallelization on Multi-Core CPUs

Pipeplines

• each pipeline is parallelized individually using all threads

BB

BA

S R

v vT

v

Build HT(S)

Build HT(T)

Probe HT(T)

Pipe 3

Scan R

Probe HT(S)

Probe HT(T)

Pipe 3

Scan R

Probe HT(S)

Probe HT(T)

Pipe 3

Scan R

Probe HT(S)

Probe HT(T)

Pipe 3

Scan R

Probe HT(S)

v
v

v
v

25 / 28

Parallelization on Multi-Core CPUs

Parallel Hash Table Construction

m
o

rsel

T

Phase 1: process T morsel-wise and store NUMA-locally

Phase 2: scan NUMA-local storage area
and insert pointers into HT

next morsel

Storage
area of

blue core

scan In
se

rt
th

e p
oin

te
r

in
to

 H
T

global

Hash Table
Storage
area of

red core

Storage
area of

green core

v

v

v

26 / 28

Parallelization on Multi-Core CPUs

Hash Tagging

• unused bits in pointers act as a cheap bloom filter

d00000100

e10000010

f

hashTable
16 bit tag for early filtering

48 bit pointer

27 / 28

Parallelization on Multi-Core CPUs

Aggregation/Group By

• parallel aggregation is one of the most difficult relational operators
• main challenge: behaves very differently depending on whether there are few or many

distinct keys

K
8
13

3

V
9
7

10

ht
K
8
3
13
3
3
10
33
4
33
8
...

V
9
2
7
8
4
7
22
17
4
7
...

K
4
33
10
3

V
17
22
7
4

ht

group

group

m
o

rs
el

m
o

rs
el

(12,7) (8,3)

(8,9) (4,30)

spill when ht becomes full

n
ex

t
re

d

m
o

rs
el

K
12

8

4

V
...

...

...

HT

K

13

33

V

...

...

HT

(41,4) (13,7)

(13,14) (33,5)

group

group

group

group

Result ptn 0

Result ptn 1

Phase 1: local pre-aggregation

Phase 2: aggregate partition-wise

Partition 0

Partition 0

...Partition 3 ...

...Partition 3 ...

28 / 28

Parallelization on Multi-Core CPUs

References

• Structured Parallel Programming: Patterns for Efficient Computation, McCool and Robison
and Reinders, Morgan Kaufmann, 2012

• Morsel-Driven Parallelism: A NUMA-Aware Query Evaluation Framework for the
Many-Core Age, Leis and Boncz and Kemper and Neumann, SIGMOD 2014

• Encapsulation of Parallelism in the Volcano Query Processing System, Graefe, SIGMOD
1990

	Parallelization on Multi-Core CPUs

