Parallelization on Multi-Core CPUs

Amdahl’'s Law

e suppose we parallelize an algorithm using n cores and p is the proportion of the task that
can be parallelized (1 — p cannot be parallelized)

o the speedup of the algorithm is

1
(1-p)+&

e assuming infinite parallelism, the speedup is
(1-p)

e for example, if 90% of the work is parallelized, the maximum speedup is only 10

e one should make sure that every phase of one’s algorithm that depends on the input data
size is parallelized

Parallelization on Multi-Core CPUs

Parallelization Constructs and Libraries

o low-level: C++ threads, pthreads (threads, mutexes, barriers, condition variables)
e parallel patterns: parallel reduce, parallel for, fork/join parallelism
o parallel frameworks: TBB, OpenMP, Cilk Plus

Intel Thread Building Blocks

e Open Source library for parallelism and concurrency
e fairly nice for prototyping

e manages a pool of worker threads

e implements work stealing

e provides high-level abstractions

e enables nested parallelism

e large systems (e.g., database systems) will have their own framework

Thread-Local Storage

e in C++ variables can be annotated as thread_local (each thread has its own copy)
e however, sometimes it would be convenient to access the thread-local state of other threads

e tbb::enumerable_thread_specific allows this

Parallelization on Multi-Core CPUs

Parallel Reduce

tbb::parallel_reduce(

tbb::blocked_range<uint64_t>(0, n), // range

Oull, // identity

[&] (const tbb::blocked_range<uint64_t>& r, uint64_t init) {
// accumulate
for (uint64_t i=r.begin(); i'!'=r.end(); i++)

init += arrayl[il;

return init;

[(uint64_t x, uint64_t y) { return x+y; }); // combine

tbb::blocked_range (Value begin, Value end, size_type grainsize=1);

Parallelization on Multi-Core CPUs

Parallel For

tbb::parallel_for (tbb::blocked_range<uint64_t>(0, n),
[&] (const tbb::blocked_range<uint64_t>& r) {
for (uint64_t i=r.begin(); i'=r.end (); i++)
array[i] *= 2;

s

Parallelization on Multi-Core CPUs

Partitioners

e parallel_for and parallel_reduce split the given range to enable parallel execution
e there are multiple builtin partitioners:
» static_partitioner splits work equally among threads up-front (no dynamic work stealing)
» simple_partitioner splits the range as much as possible (e.g., until grainsize is reached)

» auto_partitioner heuristic similar to simple_partitioner, but tries to avoid creating too
many ranges (default)

Parallelization on Multi-Core CPUs

Fork/Join Parallelism

e sometimes the amount of work to parallelize is not known upfront
e fork/join allows one to perform work on other threads (“fork"), and then to wait until these
tasks are finished (“join")

e often recursive parallelism structure

Parallelization on Multi-Core CPUs

Naive Merge Sort with Fork/Join (TBB)

const ptrdiff_t limit = 1024;

template<class Iter>
void merge_sort(Iter first, Iter last) {
if (last - first > limit) {
Iter middle = first + (last - first) / 2;
tbb::task_group g; // alternative: tbb::parallel_invoke
g.run ([&]{ merge_sort(first, middle); });
merge_sort(middle, last);
g.wait ();
std::inplace_merge (first, middle, last);
} else {
merge_sort_serial (first, last);

}

Analysis

What is the maximum speedup (with infinite cores) for sorting n elements?

e serial execution: logy(n) - n

e rough upper bound:
> the final merge is serial: n
» lower bound for fraction of serial part W = @
» using Amdahl’s law the maximum speedup is - }(n) = log,(n)
» for example, if n = 229 the upper bound is Iog2z2n) =20
e better upper bound:

. [-1
> parallel execution: Zi":gg(”) S=n+04+04.-<2n

» for example, if n = 220 the upper bound is

20n __
20 _ 10

(both analyses assume that each level recursion level takes the same amount of time, which
is not quite true in reality)

Parallelization on Multi-Core CPUs

Speedup, n = 2%

speedup

1 2 4 6 8 10
threads

Parallelization on Multi-Core CPUs

Speedup with 10 Threads

speedup

RE 516 520 24
data size [log scale]

Parallelization on Multi-Core CPUs

Parallelization Overhead, n = 2%°

0.15 1
0.10 1
w threads
) -1
£ - 10
0.05 A
0.00 A

o 5 510 515 520
limit [log scale]

Parallel Merge (1)

template<typename It>

void parallelMerge (It beginl, It endl, It begin2, It end2, It out) {

tbb::parallel_for (ParallelMergeRange<It>(beginl, endl,
[&] (ParallelMergeRange<It>& r) {

std::merge(r.beginl, r.endl, r.begin2, r.end2, r.out); 1},
tbb::simple_partitioner ());

begin2, end2, out),

template<typename It>
struct ParallelMergeRange {
It beginl, endl, begin2, end2, out;

bool empty() const { return (endl-beginl) + (end2-begin2)==0; 3}

bool is_divisible () const {
return std::min(endl-beginl, end2-begin2) > limit; }

ParallelMergeRange (It beginl_, It endl_, It begin2_, It end2_, It out_)
beginl (beginl_), endl(endl_), begin2(begin2_), end2(end2_), out(out_) {}

Parallel Merge (2)

ParallelMergeRange (ParallelMergeRange& r, tbb::split) {
if (r.endl-r.beginl < r.end2-r.begin2) {
// first range should be the larger one
std::swap(r.beginl, r.begin2);
std::swap(r.endl, r.end2);

}

It ml1 = r.beginl + (r.endl-r.beginl)/2;

It m2 = std::lower_bound(r.begin2, r.end2, *ml);
beginl = mi;

begin2 = m2;

endl = r.endl;

end2 = r.end2;

out = r.out + (ml-r.beginl) + (m2-r.begin2);
r.endl = mil;

r.end2 = m2;

}
}; // struct ParallelMergeRange

Parallel Out-Of-Place Merge Sort

template<class It>
void parallelMergeSort (It first, It last, It out, bool inplace=false)
if ((last-first) < 1limit) {
merge_sort_serial (first, last);
if (!inplace)
std::move(first, last, out);
} else {
It mid = first + (last-first)/2;
It outMid = out + (mid-first);
It outLast = out + (last-first);
tbb::parallel_invoke (
[&] () { parallelMergeSort(first, mid, out, !inplace); 1},
[£1() { parallelMergeSort(mid, last, outMid, !inplace); });
if (inplace)
parallelMerge (out, outMid, outMid, outLast, first);
else
parallelMerge (first, mid, mid, last, out);

Scalability, n = 2%

100M o
75M A
@
£
b5 50M A
25M method
-®- in-place
-®- out-of-place
0 -

1 2 4 6 8 10
threads

Parallelization on Multi-Core CPUs
1

HyPer's Parallel Merge Sort

1. divide input data statically, each thread sorts its fraction

2. determine separators, compute output positions (prefix sums)
3. merge into output array

H globgl 2/3
'*[[ﬁ]]h'
LA, A A . N A
slocal 1/3 S e 0\7,'|,'
'u. Compute global separators \Oc’ .
L4
4
". o’ from the local separators
L AN AAA
'3""’ *. : 'v' 's:\ J
'merge Ymer e merge

Pitfalls in Parallel Code

e non-scalable algorithm

> re-think algorithm
e load imbalance

> break work into smaller tasks, dynamically schedule these between threads
e task overhead: managing tasks takes more time than the actual work

> set a minimum per-thread tasks size (not too small, not to large)

Parallelization on Multi-Core CPUs

Volcano-Style Parallelism

e plan-driven approach:

> optimizer statically determines at query compile time how many threads should run
> instantiates one query operator plan for each thread
» connects these with exchange operators, which encapsulate parallelism and manage threads

e Elegant model which is used by many systems

Xchg(3:1)
N
r r r
NS
XchgHashSplit(3:3)
SN
o O o
[

0 —o——

Volcano-Style Parallelism (2)

+ operators are largely oblivious to parallelism
— static work partitioning can cause load imbalances

— degree of parallelism cannot easily be changed mid-query
— overhead:

» thread oversubscription causes context switching
> hash re-partitioning often does not pay off
» exchange operators create additional copies of the tuples

Parallelization on Multi-Core CPUs

Morsel-Driven Query Execution (1)

e break input into constant-sized work units (“morsels”)
e dispatcher assigns morsels to worker threads

o # worker threads = # hardware threads

e operators are designed for parallel execution

Result

HT(T) HT(S)
/8 y ‘/probe(s)\ 1618
33 | x
e 5Ty P) FE
27 |10
store
5 |z
23 {u

Dispatcher

probe(16)
AN

16

probe(27)

Pipeplines

e each pipeline is parallelized individually using all threads

Pipeplines

e each pipeline is parallelized individually using all threads

Build HT(T)

Pipeplines

e each pipeline is parallelized individually using all threads

Build HT(S)

Build HT(T)

Parallelization on Multi-Core CPUs

Pipeplines

e each pipeline is parallelized individually using all threads

/probeHl(U

/v

imProbe HT(T)

aProbe HT(T)

Probe HT(S)

i

P

robe HT(T)
Build HT(S)

~

Probe HT(S)

Probe HT(S)
robe HT(S) \

ScanR

Parallelization on Multi-Core CPUs

Parallel Hash Table Construction

Phase 2: scan NUMA-local storage area
and insert pointers into HT

@ase 1: process T morsel-wise and store NUMA-IocaE

area of
red core

area

green core

global
§Hash Table

area of

blue core

Hash Tagging

e unused bits in pointers act as a cheap bloom filter

16 bit tag for early filtering

hashTable

Parallelization on Multi-Core CPUs

Aggregation/Group By

o parallel aggregation is one of the most difficult relational operators

e main challenge: behaves very differently depending on whether there are few or many
distinct keys

spill when ht becomes full HT
K |V K [v
8 g Partition 0 12
4| ENE (12,7) (83)
2| [13]7
3 |8

| (414)(137)

[~
8roy,
\ G Result ptn 0
[=>{ .Partition3..

next red

< Phase 1: local pre-aggregation >
< Phase 2: aggregate partition-wise >

Parallelization on Multi-Core CPUs

References

o Structured Parallel Programming: Patterns for Efficient Computation, McCool and Robison
and Reinders, Morgan Kaufmann, 2012

e Morsel-Driven Parallelism: A NUMA-Aware Query Evaluation Framework for the
Many-Core Age, Leis and Boncz and Kemper and Neumann, SIGMOD 2014

e Encapsulation of Parallelism in the Volcano Query Processing System, Graefe, SIGMOD
1990

	Parallelization on Multi-Core CPUs

