Fortsetzung: Anfragen mit SQL

Bisher:

- Projektion, Selektion, Duplikatbehandlung, NULL Werte
- Kreuzprodukt, Inner Join
- Mengenoperationen
- Sortierung
- Geschachtelte Anfragen
- Existenzquantor, Mengenvergleich
- Gruppierung, Aggregate
- Cast-Operator

Professoren							Studenten					Vorlesungen							
	Persi	Nr	Nam	е	Rang	Raum	Ma	trNr		Name	S	eme	ester	Vo	orlNr		Titel	SWS	Ç
	212	5	Sokrat	es	C4	226	24	1002	Xe	nokrates	6	1	8				•	_	
	212	6	Russe	el	C4	232	25	403		Jonas		1	2	-	001	G	irundzüge	4	<u> </u>
	212	7 K	Coperni	kus	С3	310	26	120		Fichte		1	0		041	Ethik		4	L
	213	3	Poppe	er	С3	52	26	830	Ari	stoxeno	S	8	3		043	Erke	nntnistheorie	3	<u> </u>
2134		4 A	Augustinus		C3	309	09 27550		Schopenhauer		6	5	5	5049		Mäeutik	2	L	
2136		6	Curie		C4	36	28	28106 Carnap			3	3	4	4052		Logik	4	L	
	213	7	Kant	-	C4	7	29	120	The	ophrasto	os	2	2	5	052	Wisser	nschaftstheorie	3	
		hörer					29	555	Fe	<u>.</u> euerbach		2		5	216	Bioethik		2	
	26° 27!		atrNr VorIN		orlNr		vorausse		sset	tzen				5259		Der Wiener Kreis Glaube und Wissen Die 3 Kritiken		2	
						Vo	rgänger Na		chfolger				5	022	2				
					001	1 🗀	5001		5041 5043					4630				4	
					052	┪┞┈	5001							Assistenten					
	I		8106 50		041		5001		5049			Ī	PersN	r	Nan	ne	Fachgebi	ebiet	
	2		8106		052		5041		5216				3002		Platon		Ideenlehre		_
		281	106	5	216		5043		5052				3003	,	Aristot	teles	Syllogisti	k	
	28		8106 5259			5041		5052				3004	Wittgenstein		nstein	Sprachtheorie			
	29		29120 5001			5052		5259				3005	Rhetikus		kus	Planetenbewegung			
	291		7120 5041					orüfen				3006		Newton		Keplersche Gesetze			
	2		9120 504		049	Mat	atrNr Vor		INr PersNr I		No	te	3007		Spino	oza	Gott und N	atur	
		254	25403 5		022	281	06	06 5001		2126	1			-					
	29		29555 50		022	254	03 5041		11	2125	2)	1						
		295	555	5	001	275	50	463	30	2137	2)]						

SWS gelesen Von

Boss

Weitere Anfragen mit Unteranfragen

```
select Name
from Professoren
where PersNr not in ( select gelesenVon
                      from Vorlesungen );
select Name
from Studenten
where Semester > = all ( select Semester
                         from Studenten );
```

Das case-Konstrukt

from prüfen;

Die **erste** qualifizierende **when**-Klausel wird ausgeführt

Joins in SQL-92

- cross join: volles Kreuzprodukt (nicht in allen DBS!)
- natural join: natürlicher Join, Gleichheitstest auf alle gleichnamigen Attribute in den Relationen, Ausgabe aller Attribute, die gleichnamigen nur jeweils einmal (nicht in allen DBS!)
- join oder auch genannt inner join: Theta-Join, Theta Prädikat über Attribute
- left, right oder full outer join: äußerer Join
- semi-join: kein Operator in SQL, ausgedrückt mit exists oder in Konstrukte

(Inner) Join

```
select *
from R_1, R_2
where R_1.A = R_2.B;
```

oder auch

select * from R_1 join R_2 on $R_1.A = R_2.B$;

Äußere Joins (links)

Ergebnis

PersNr	p.Name	f.PersNr	f.Note	f.MatrNr	s.MatrNr	s.Name
2126	Russel	2126	1	28106	28106	Carnap
2125	Sokrates	2125	2	25403	25403	Jonas
2137	Kant	2137	2	27550	27550	Schopen- hauer
						hauer
2136	Curie	-	-	-	-	-
i	:	•		:		•

Äußere Joins (rechts)

Ergebnis

PersNr	p.Name	f.PersNr	f.Note	f.MatrNr	s.MatrNr	s.Name
2126	Russel	2126	1	28106	28106	Carnap
2125	Sokrates	2125	2	25403	25403	Jonas
2137	Kant	2137	2	27550	27550	Schopen-
						hauer
-	-	-	-	-	26120	Fichte
i	:		:	•	:	i

Äußere Joins (full)

Veränderung am Datenbestand: Einfügen

Einfügen von Tupeln durch Anfrage

insert into hören

select MatrNr, VorlNr

from Studenten, Vorlesungen

where Titel= `Logik´;

Einfügen von Tupeln durch explizite Wertangabe

insert into Studenten (MatrNr, Name)

values (28121, `Archimedes´), (4711, ,Pythagoras');

Veränderung am Datenbestand: Einfügen

Einfügen von Tupeln aus Datei

Datenbankspezifische Dienstprogramme, z.B. DB2:

• Import:

```
IMPORT FROM studis.tbl OF DEL INSERT INTO Studenten;
```

```
Analog: EXPORT TO studis.tbl OF DEL SELECT * FROM Studenten;
```

• Load:

High-Performance Alternative zu Import

Oracle: Load, Datapump, ...

Veränderung am Datenbestand: Löschen, Verändern

delete Studenten

where Semester > 13;

Achtung: delete Studenten löscht gesamten Inhalt der Relation

update Studenten

set Semester = Semester + 1;

Zweistufiges Vorgehen bei Änderungen

- 1.die Kandidaten für die Änderung werden ermittelt und "markiert"
- 2.die Änderung wird an den in Schritt 1. ermittelten Kandidaten durchgeführt
- Anderenfalls könnte die Änderungsoperation von der Reihenfolge der Tupel abhängen, wie folgendes Beispiel zeigt:

delete from voraussetzen
where Vorgänger in (select Nachfolger
from voraussetzen);

Beispiel

VO	vorausssetzen						
Vorgänger	Nachfolger						
5001	5041						
5001	5043						
5001	5049						
5041	5216						
5043	5052						
5041	5052						
5052	5229						

Ohne einen Markierungsschritt hängt das Ergebnis dieser Anfrage von der Reihenfolge der Tupel in der Relation ab. Eine Abarbeitung in der Reihenfolge der Beispielausprägung würde das letzte Tupel (5052, 5229) fälschlicherweise erhalten, da vorher bereits alle Tupel mit 5052 als *Nachfolger* entfernt wurden.

Veränderungen am Schema

- drop table <Tabellenname>
- alter table <Tabellenname>
 drop| add column <Attributname> <Datentyp>
 alter column <Attributname> set default <default>

Weitere datenbankspezifisch, z.B. Oracle:

- alter table <Tabellenname>
 - modify | add column < Attributname > < Datentyp >
 - drop column <Attributname>
 - add | drop | enable | disable < constraint-Klausel>

Sichten ...

- gehören zur DDL:
 create view <viewname> as <select-statement>
- oft verwendet, um Anfragen übersichtlicher zu gestalten
- stellen eine Art "virtuelle Relation" dar
- zeigen einen Ausschnitt aus der Datenbank
- Vorteile
 - vereinfachen den Zugriff für bestimmte Benutzergruppen
 - können eingesetzt werden, um den Zugriff auf die Daten einzuschränken
- Nachteil
 - nicht auf allen Sichten können Änderungsoperationen ausgeführt werden

Erinnerung

select tmp.MatrNr, tmp.Name, tmp.VorlAnzahl

from (select s.MatrNr, s.Name, count(*) as VorlAnzahl

from Studenten s, hoeren h

where s.MatrNr=h.MatrNr

group by s.MatrNr, s.Name) tmp

where tmp. VorlAnzahl > 2;

... auch möglich

```
with tmp (MatrNr, Name, VorlAnzahl) as
(select s.MatrNr, s.Name, count(*)
      from Studenten s, hoeren h
      where s.MatrNr=h.MatrNr
      group by s.MatrNr, s.Name)
select *
from tmp
where VorlAnzahl > 2;
→ temporäre Tabelle, nur gültig innerhalb der Query
```

Vereinfachung mit Sichten

Komplexe Anfrage: Finde die Namen aller Professoren, die Vorlesungen halten, die mehr als der Durchschnitt an Credits wert sind, und die mehr als drei Assistenten beschäftigen.

- nicht alles gleich auf einmal machen ->
 kleinere übersichtlichere Teile
- diese Teile können mit Hilfe von Sichten realisiert werden oder auch mit benannten Zwischenergebnissen

Vereinfachung

1. Finde alle Vorlesungen mit überdurchschnittlich viel Credits:

```
create view ÜberSchnittCredit as
  select Nr, ProfPersNr
  from Vorlesung
  where Credits >
    (select avg (Credits)
    from Vorlesung);
```

Vereinfachung

2. Finde alle Professoren mit mehr als drei Assistenten:

create view VieleAssistenten as
 select Boss
 from Assistent
 group by Boss
 having count(*) > 3;

Vereinfachung

- alles zusammensetzen
- Sichten können wie eine herkömmliche Relation angesprochen werden

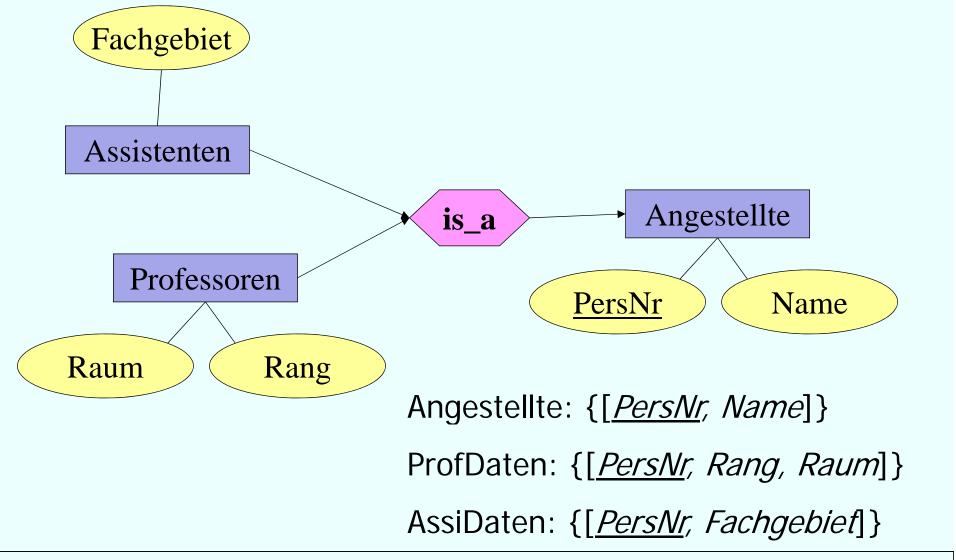
```
select Name
from Professor
where PersNr in
  (select PersNr
from ÜberSchnittCredit) and
        PersNr in
  (select Boss
from VieleAssistenten);
```

Sichten ...

für den Datenschutz

create view prüfenSicht as
 select MatrNr, VorlNr, PersNr
from prüfen

Sichten ...


für den Datenschutz

create view prüfenSicht as
 select MatrNr, VorlNr, PersNr
from prüfen

für Statistik

create view PruefGuete(Name, GueteGrad) as
 (select prof.Name, avg(pruef.Note)
 from Professoren prof join pruefen pruef on
 prof.PersNr = pruef.PersNr
 group by prof.Name, prof.PersNr
 having count(*) > 50)

Relationale Modellierung der Generalisierung

Tabellendefinitionen

```
create table Angestellte
    (PersNr integer not null,
    Name varchar (30) not null);
create table ProfDaten
    (PersNr integer not null,
    Rang character(2),
    Raum
            integer);
create table AssiDaten
    (PersNr
                 integer not null,
    Fachgebiet varchar(30);
```

Sichten zur Modellierung von Generalisierung

create view Professoren as

select *

from Angestellte a, ProfDaten d

where a.PersNr=d.PersNr;

create view Assistenten as

select *

from Angestellte a, AssiDaten d

where a.PersNr=d.PersNr;

Untertypen als Sicht

Tabellendefinitionen

```
create table Professoren
```

(PersNr integer not null,

Name varchar (30) not null,

Rang **character** (2),

Raum integer);

create table Assistenten

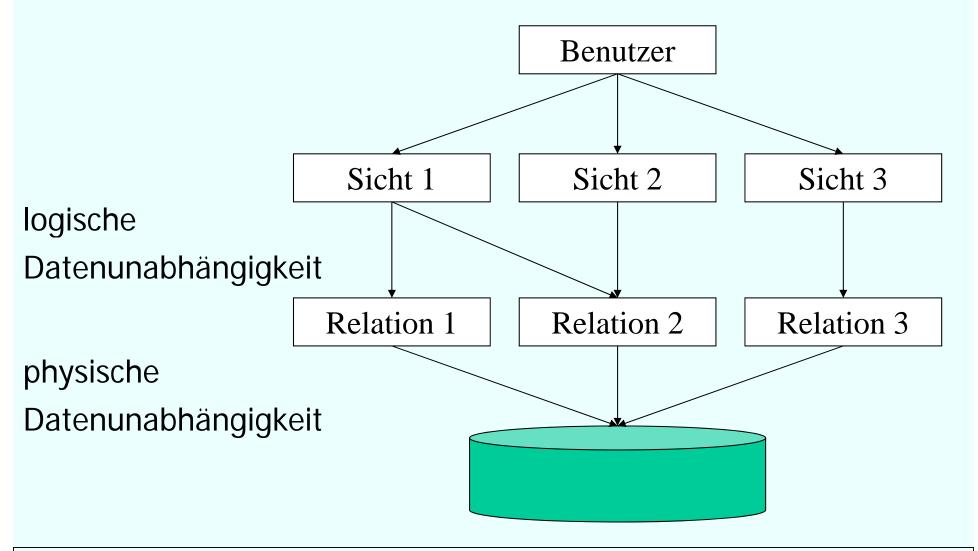
(PersNr integer not null,

Name varchar (30) not null,

Fachgebiet varchar (30);

create table AndereAngestellte

(PersNr integer not null,


Name varchar (30) not null);

Sichten zur Modellierung von Generalisierung

```
create view Angestellte as
      (select PersNr, Name
      from Professoren)
       union
      (select PersNr, Name
      from Assistenten)
       union
      (select *
      from AndereAngestellte);
```

Obertyp als Sicht

Sichten zur Gewährleistung von Datenunabhängigkeit

Änderbarkeit von Sichten

in SQL

- nur eine Basisrelation
- Schlüssel muss vorhanden sein
- keine Aggregatfunktionen, Gruppierung und Duplikateliminierung

theoretisch änderbare Sichten
in SQL änderbare Sichten

Sichten

Lebensdauer, Gültigkeit

Löschen: DROP VIEW view-name

Ungültige (inoperative) Views:

Basisrelation wird gelöscht

Rechteverlust des View-Erstellers

View-Definition bleibt erhalten (ungültig markiert, kann durch Neudefinition reaktiviert werden)

Auswertung:

Ersetzen der Sicht durch ihre Definition (~ Makro)

keine Speicherung (Materialisierung) der Sichtauswertung