

Zentralübung Einsatz und Realisierung von Datenbanksystemen

Maximilian Bandle

Organisatorisches

Disclaimer

Folien enthalten wichtige Themen oder Themen, die viele Fragen aufwarfen.

Falls etwas auf den Folien nicht erwähnt ist, aber in den Übungen / Vorlesung besprochen wurde, kann daraus nicht geschlossen werden, dass es nicht in der Prüfung drankommt.

Auf den Folien dargestellte Übungen können Fehler enthalten.

Organisatorisches

Klausur

Hauptklausur

1. August 2019, 15:30 - 17:00

Wiederholungsklausur

11. Oktober 2019, 15:30 - 17:00

Durchführung

90 Minuten Bearbeitungszeit Raumeinteilung wird rechtzeitig bekannt gegeben Keine Hilfsmittel (Taschenrechner, DB-Buch, Spickzettel, ...) erlaubt!

ACID

Atomicity (Atomarität)

"alles oder nichts"-Prinzip: die TA wird komplett geschrieben oder garnicht

Consistency (Konsistenz)

TA hinterlässt(abort/commit) einen konsistenten Zustand der Datenbasis

Isolation (Isolation)

Nebenläufige TA dürfen sich nicht beeinflussen

Durability (Dauerhaftigkeit)

Das Ergebnis einer Transaktion bleibt dauerhaft in der Datenbank erhalten

Kapitel 10

Recovery

RecoveryWrite Ahead Logging

- Schreiben der Log-Einträge vor dem Commit
- Vor Auslagerung einer Seite: Schreiben aller zugehörigen Log-Einträge

Recovery Speicherhierarchie

Ersetzung von Puffer-Seiten

¬Steal: Seiten die noch von einer Transaktion modifiziert werden müssen im Speicher verbleiben.

Steal: Seiten können (fast) immer aus dem Puffer in den Speicher eingelagert werden.

Einbringen von Änderungen abgeschlossener Transaktionen

Force: Änderungen werden direkt nach Durchführung gespeichert

¬Force: Änderungen können im Puffer-Speicher verbleiben

Speicherhierarchie - Auswirkungen auf Recovery

	force	¬force
¬steal	kein Undo kein Redo	kein Undo Redo
steal	Undo kein Redo	Undo Redo

Speicherhierarchie - Auswirkungen auf Recovery

¬steal & force

wird eine Seite von 2 TA geändert, so kann die 1. nicht comitten

¬steal & ¬force

- Seiten können nach Transaktionsende ersetzt werden, ohne dass die Änderungen in die DB übernommen werden
- Strategie bei Main Memory DBs

steal & force

- direktes Einlagern beim commit ist teuer, gesammeltes Einlagern ist günstiger
- nicht commitete Daten können festgeschrieben werden

steal & ¬force

- Änderungen von (aktiven) TAs können beim Systemabsturz verloren gehen
- nicht commitete Daten können festgeschrieben werden

[LSN, TA, PageID, Redo, Undo, PrevLSN]

Initialwerte: A = 1000, B = 2000, C = 3000

Schritt	T ₁	T ₂	Log
1	ВОТ		[#1,T ₁ , BOT ,0]
2	r(A, a₁)		
3		ВОТ	[#2,T ₂ , BOT ,0]
4		r(C, c ₂)	
5	$a_1 := a_1 - 50$		
6	$w(A, a_1)$		[#3,T ₁ ,P _A ,A ,A ,#1]
7		$c_2 := c_2 + 100$	
8		w(C, c ₂)	$[#4,T_2,P_C,C,C,\#2]$
9	$r(B, b_1)$		
10	$b_1 := b_1 + 50$		
11	$w(B, b_1)$		$[#5,T_1,P_B,B,C,\#3]$
12	commit		$[#6,T_1,commit,#5]$
13		r(A, a ₂)	
14		a ₂ := a ₂ - 100	
15		w(A, a ₂)	$[#7,T_2,P_A,A,A,\#4]$
16		commit	[#8,T ₂ ,commit,#7]

[LSN, TA, PageID, Redo, Undo, PrevLSN] Initialwerte: A = 1000, B = 2000, C = 3000

		Logische i rotoko	illerarig		
Schritt	T ₁	T ₂	Lo	og	
1	ВОТ		[#1,T ₁ ,I	BOT ,0]	
2	r(A, a₁)				
3		ВОТ	[#2,T ₂ ,I	BOT ,0]	
4		r(C, c ₂)			
5	$a_1 := a_1 - 50$				
6	w(A, a ₁)		[#3,T ₁ ,P _A ,A-=	50,A+=5	50,#1]
7		$c_2 := c_2 + 100$			
8		w(C, c ₂)	[#4,T ₂ ,P _C ,C	,C	,#2]
9	r(B, b₁)				
10	$b_1 := b_1 + 50$				
11	$w(B, b_1)$		[#5,T ₁ ,P _B ,B	,C	,#3]
12	commit		[#6,T ₁ , co	mmit,#5	5]
13		r(A, a ₂)			
14		$a_2 := a_2 - 100$			
15		w(A, a ₂)	[#7,T ₂ ,P _A ,A	,A	,#4]
16		commit	[#8,T ₂ ,co	mmit,#7]

[LSN, TA, PageID, Redo, Undo, PrevLSN]

Initialwerte: A = 1000, B = 2000, C = 3000

Schritt	T ₁	T ₂	Log
1	ВОТ		[#1,T ₁ , BOT ,0]
2	r(A, a₁)		
3		ВОТ	[#2,T ₂ , BOT ,0]
4		r(C, c ₂)	
5	$a_1 := a_1 - 50$		
6	w(A, a ₁)		$[#3,T_1,P_A,A-=50,A+=50,#1]$
7		$c_2 := c_2 + 100$	
8		w(C, c ₂)	$[#4,T_2,P_C,C+=100,C-=100,#2]$
9	r(B, b₁)		
10	$b_1 := b_1 + 50$		
11	$w(B, b_1)$		[#5,T ₁ ,P _B ,B ,C ,#3]
12	commit		[#6,T ₁ , commit ,#5]
13		r(A, a ₂)	
14		a ₂ := a ₂ - 100	
15		w(A, a ₂)	$[#7,T_2,P_A,A,A,\#4]$
16		commit	[#8,T ₂ ,commit,#7]

[LSN, TA, PageID, Redo, Undo, PrevLSN]

Initialwerte: A = 1000, B = 2000, C = 3000

Schritt	T ₁	T ₂	Log
1	ВОТ		[#1,T ₁ , BOT ,0]
2	r(A, a₁)		
3		ВОТ	[#2,T ₂ , BOT ,0]
4		r(C, c ₂)	
5	$a_1 := a_1 - 50$		
6	w(A, a ₁)		$[#3,T_1,P_A,A-=50,A+=50,#1]$
7		$c_2 := c_2 + 100$	
8		w(C, c ₂)	$[#4,T_2,P_C,C+=100,C-=100,#2]$
9	r(B, b ₁)		
10	$b_1 := b_1 + 50$		
11	$w(B, b_1)$		$[#5,T_1,P_B,B_{+}=50,C_{-}=50,#3]$
12	commit		[#6,T ₁ , commit ,#5]
13		r(A, a ₂)	
14		$a_2 := a_2 - 100$	
15		w(A, a ₂)	$[#7,T_2,P_A,A,A,\#4]$
16		commit	[#8,T ₂ ,commit,#7]

[LSN, TA, PageID, Redo, Undo, PrevLSN]

Initialwerte: A = 1000, B = 2000, C = 3000

Schritt	T ₁	T ₂	Log
1	вот		[#1,T ₁ , BOT ,0]
2	r(A, a₁)		
3		ВОТ	[#2,T ₂ , BOT ,0]
4		r(C, c ₂)	
5	$a_1 := a_1 - 50$		
6	w(A, a ₁)		$[#3,T_1,P_A,A-=50,A+=50,#1]$
7		$c_2 := c_2 + 100$	
8		w(C, c ₂)	$[#4,T_2,P_C,C+=100,C-=100,#2]$
9	r(B, b₁)		
10	$b_1 := b_1 + 50$		
11	$w(B, b_1)$		$[#5,T_1,P_B,B+=50,C-=50,#3]$
12	commit		[#6,T ₁ , commit ,#5]
13		r(A, a ₂)	
14		$a_2 := a_2 - 100$	
15		w(A, a ₂)	$[#7,T_2,P_A,A-=100,A+=100,#4]$
16		commit	[#8,T ₂ ,commit,#7]

[LSN, TA, PageID, Redo, Undo, PrevLSN]

Initialwerte: A = 1000, B = 2000, C = 3000

Schritt	T ₁	T ₂	Log
1	вот		[#1,T ₁ , BOT ,0]
2	r(A, a₁)		
3		ВОТ	[#2,T ₂ , BOT ,0]
4		r(C, c ₂)	
5	$a_1 := a_1 - 50$		
6	w(A, a ₁)		$[#3,T_1,P_A,A-=50,A+=50,#1]$
7		$c_2 := c_2 + 100$	
8		w(C, c ₂)	$[#4,T_2,P_C,C+=100,C-=100,#2]$
9	r(B, b₁)		
10	$b_1 := b_1 + 50$		
11	$w(B, b_1)$		$[#5,T_1,P_B,B+=50,C-=50,#3]$
12	commit		[#6,T ₁ , commit ,#5]
13		r(A, a ₂)	
14		$a_2 := a_2 - 100$	
15		w(A, a ₂)	$[#7,T_2,P_A,A-=100,A+=100,#4]$
16		commit	[#8,T ₂ ,commit,#7]

[LSN, TA, PageID, After-Image, Before-Image, PrevLSN] Initialwerte: A = 1000, B = 2000, C = 3000

Schritt	T ₁	T ₂	Log
1	ВОТ		[#1,T ₁ , BOT ,0]
2	r(A, a₁)		
3		ВОТ	[#2,T ₂ , BOT ,0]
4		r(C, c ₂)	
5	$a_1 := a_1 - 50$		
6	$w(A, a_1)$		$[#3,T_1,P_A,A=,A=,#1]$
7		$c_2 := c_2 + 100$	
8		w(C, c ₂)	$[#4,T_2,P_C,C=,C=,#2]$
9	r(B, b ₁)		
10	$b_1 := b_1 + 50$		
11	$w(B, b_1)$		$[#5,T_1,P_B,B=,B=,#3]$
12	commit		[#6,T ₁ , commit ,#5]
13		r(A, a ₂)	
14		a ₂ := a ₂ - 100	
15		w(A, a ₂)	$[#7,T_2,P_A,A=,A=,#4]$
16		commit	[#8,T ₂ ,commit,#7]

[LSN, TA, PageID, After-Image, Before-Image, PrevLSN] Initialwerte: A = 1000, B = 2000, C = 3000

Schritt	T ₁	T ₂	Log
1	ВОТ		[#1,T ₁ , BOT ,0]
2	r(A, a₁)		
3		ВОТ	[#2,T ₂ , BOT ,0]
4		r(C, c ₂)	
5	$a_1 := a_1 - 50$		
6	$w(A, a_1)$		[#3,T ₁ ,P _A ,A=950,A=1000,#1]
7		$c_2 := c_2 + 100$	
8		w(C, c ₂)	$[#4,T_2,P_C,C=,C=,#2]$
9	r(B, b₁)		
10	$b_1 := b_1 + 50$		
11	$w(B, b_1)$		$[#5,T_1,P_B,B=$,B= ,#3]
12	commit		[#6,T ₁ , commit ,#5]
13		r(A, a ₂)	
14		a ₂ := a ₂ - 100	
15		w(A, a ₂)	$[#7,T_2,P_A,A=,A=,#4]$
16		commit	[#8,T ₂ ,commit,#7]

[LSN, TA, PageID, After-Image, Before-Image, PrevLSN] Initialwerte: A = 1000, B = 2000, C = 3000

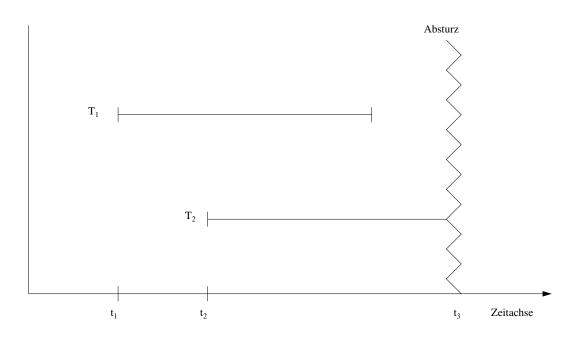
Schritt	T ₁	T ₂	Log
1	ВОТ		[#1,T ₁ , BOT ,0]
2	r(A, a₁)		
3		ВОТ	[#2,T ₂ , BOT ,0]
4		r(C, c ₂)	
5	$a_1 := a_1 - 50$		
6	w(A, a ₁)		[#3,T ₁ ,P _A ,A=950,A=1000,#1]
7		$c_2 := c_2 + 100$	
8		w(C, c ₂)	$[#4,T_2,P_C,C=3100,C=3000,#2]$
9	r(B, b₁)		
10	$b_1 := b_1 + 50$		
11	$w(B, b_1)$		$[#5,T_1,P_B,B=$,B= ,#3]
12	commit		[#6,T ₁ ,commit,#5]
13		r(A, a ₂)	
14		a ₂ := a ₂ - 100	
15		w(A, a ₂)	$[#7,T_2,P_A,A=,A=,#4]$
16		commit	[#8,T ₂ ,commit,#7]

[LSN, TA, PageID, After-Image, Before-Image, PrevLSN] Initialwerte: A = 1000, B = 2000, C = 3000

Schritt	T ₁	T ₂	Log
1	вот		[#1,T ₁ , BOT ,0]
2	r(A, a₁)		
3		ВОТ	[#2,T ₂ , BOT ,0]
4		r(C, c ₂)	
5	a ₁ := a ₁ - 50		
6	w(A, a ₁)		[#3,T ₁ ,P _A ,A=950,A=1000,#1]
7		$c_2 := c_2 + 100$	
8		w(C, c ₂)	[#4,T ₂ ,P _C ,C=3100,C=3000,#2]
9	r(B, b₁)		
10	$b_1 := b_1 + 50$		
11	$w(B, b_1)$		$[#5,T_1,P_B,B=2050,B=2000,#3]$
12	commit		[#6,T ₁ , commit ,#5]
13		r(A, a ₂)	
14		a ₂ := a ₂ - 100	
15		w(A, a ₂)	$[#7,T_2,P_A,A=,A=,#4]$
16		commit	[#8,T ₂ ,commit,#7]

[LSN, TA, PageID, After-Image, Before-Image, PrevLSN] Initialwerte: A = 1000, B = 2000, C = 3000

Schritt	T ₁	T ₂	Log
1	вот		[#1,T ₁ , BOT ,0]
2	r(A, a₁)		
3		ВОТ	[#2,T ₂ , BOT ,0]
4		r(C, c ₂)	
5	$a_1 := a_1 - 50$		
6	w(A, a ₁)		[#3,T ₁ ,P _A ,A=950,A=1000,#1]
7		$c_2 := c_2 + 100$	
8		w(C, c ₂)	$[#4,T_2,P_C,C=3100,C=3000,#2]$
9	r(B, b₁)		
10	$b_1 := b_1 + 50$		
11	w(B, b ₁)		$[#5,T_1,P_B,B=2050,B=2000,#3]$
12	commit		[#6,T ₁ , commit ,#5]
13		r(A, a ₂)	
14		$a_2 := a_2 - 100$	
15		w(A, a ₂)	$[#7,T_2,P_A,A=850,A=950,#4]$
16		commit	[#8,T ₂ ,commit,#7]


[LSN, TA, PageID, After-Image, Before-Image, PrevLSN] Initialwerte: A = 1000, B = 2000, C = 3000

Schritt	T ₁	T ₂	Log
1	ВОТ		[#1,T ₁ , BOT ,0]
2	r(A, a₁)		
3		ВОТ	[#2,T ₂ , BOT ,0]
4		r(C, c ₂)	
5	$a_1 := a_1 - 50$		
6	w(A, a ₁)		[#3,T ₁ ,P _A ,A=950,A=1000,#1]
7		$c_2 := c_2 + 100$	
8		w(C, c ₂)	$[#4,T_2,P_C,C=3100,C=3000,#2]$
9	r(B, b₁)		
10	$b_1 := b_1 + 50$		
11	w(B, b ₁)		$[#5,T_1,P_B,B=2050,B=2000,#3]$
12	commit		[#6,T ₁ , commit ,#5]
13		r(A, a ₂)	
14		$a_2 := a_2 - 100$	
15		w(A, a ₂)	[#7,T ₂ ,P _A ,A=850,A=950,#4]
16		commit	[#8,T ₂ ,commit,#7]

Wiederanlauf nach einem Fehler

- TAs der Art T₁ sind Winner: müssen vollständig nachvollzogen werden
- TAs der Art T₂ sind **Loser**: müssen rückgängig gemacht werden

2. Wiederholung der Historie

Alle protokollierten Redo-Logs werden in der richtigen Reihenfolge ausgeführt

=> Datenbankzustand während des Absturzes

3. Undo der Losertransaktionen

Alle uncomitteten TAs werden abgebrochen und ihre Auswirkungen auf die Datenbasis aufgehoben

Phasen des Wiederanlaufs

Ermittle die Winner & Loser-Transaktionen:

Phasen des Wiederanlaufs

Ermittle die Winner & Loser-Transaktionen:

Winner: TA3 Loser: TA1, TA2

Phasen des Wiederanlaufs

Ermittle die Winner & Loser-Transaktionen:

2. w1[x], w1[x], w1[x], c1, w3[x], c3, w2[y], a2

3. r2[z], w4[z], w2[x], r3[y], w2[y], c2, r1[y], c4, c3, c1

Winner: TA3

Loser: TA1, TA2

Winner: TA1

Loser: TA2, TA3

Phasen des Wiederanlaufs

Ermittle die Winner & Loser-Transaktionen:

2. w1[x], w1[x], w1[x], c1, w3[x], c3, w2[y], a2

3. r2[z], w4[z], w2[x], r3[y], w2[y], c2, r1[y], c4, c3, c1

Winner: TA3

Loser: TA1, TA2

Winner: TA1

Loser: TA2, TA3

Winner: TA2

Loser: TA1, TA3, TA4

<LSN, TA, PageID, Redo, PrevLSN, UndoNxtLSN > Initialwerte: A = 1000, B = 2000, C = 3000

Compensation Log Records

Schritt	T ₁	T ₂	Log	
1	ВОТ		[#1,T ₁ , BOT ,0]	
2	r(A, a₁)			
3		ВОТ	[#2,T ₂ , BOT ,0]	
4		r(C, c ₂)		
5	$a_1 := a_1 - 50$			
6	w(A, a ₁)		[#3,T ₁ ,P _A ,A-=50,A+=50,#1]	
7		$c_2 := c_2 + 100$		
8		$w(C, c_2)$	[#4,T ₂ ,P _C ,C+=100,C-=100,#2]	
9	r(B, b₁)			
10	$b_1 := b_1 + 50$			
11	w(B, b ₁)		[#5,T ₁ ,P _B ,B+=50,C-=50,#3]	
12	commit		[#6,T ₁ , commit ,#5]	Absturz
13		r(A, a ₂)		- Abotai E
14		$a_2 := a_2 - 100$		CLR:
15		w(A, a ₂)	[#7,T ₂ ,P _A ,A-=100,A+=100,#4]	<#4',T ₂ ,P _C ,C-=100,#4,#2 >
16		commit	[#8,T ₂ ,commit,#7]	<#2',T ₂ ,-,-,#4',0>

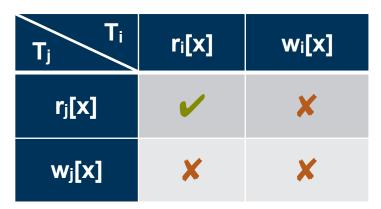
Kapitel 11

Mehrbenutzersynchronisation

Mehrbenutzersynchronisation Formale Definition einer Transaktion

Operationen einer Transaktion TA Ti

- BOT_i Beginn der Transaktion (Begin Of Transaction)
- r_i(A) Lesen (Read) von Datenobjekt A
- w_i(A) Schreiben (Write) von Datenobjekt A
- ai Abbruch (Abort) der Transaktion
- ci Festschreiben (Commit) der Transaktion



Mehrbenutzersynchronisation Konfliktoperationen

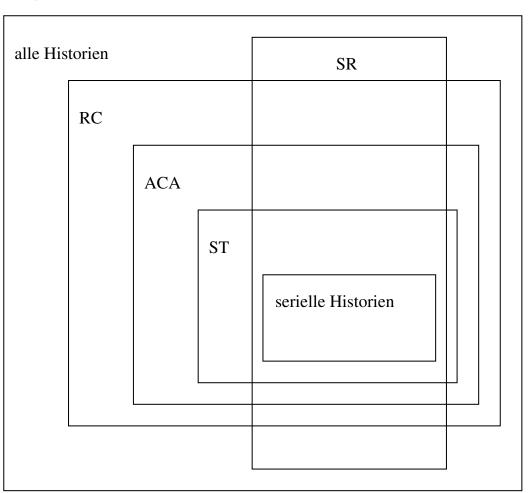
In Konflikt stehende Operationen dürfen nicht parallel ausgeführt werden

Zwei Operationen stehen in Konflikt, wenn beide auf dem selben Datenobjekt arbeiten wollen und mindestens eine Operation schreibt

Kein KonfliktKonflikt

Mehrbenutzersynchronisation Klassifikation von Historien

SR: serialisierbar


RC: rücksetzbar

ACA: vermeidet kaska-

dierendes Rücksetzen

ST: strikt

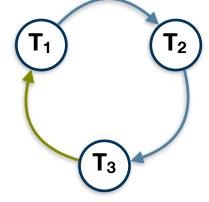
ST&SR: Seriell

Mehrbenutzersynchronisation Klassifikation von Historien (Serialisierbar)

 $r_2[y]$, $r_1[y]$, $w_2[y]$, c_2 , $r_3[x]$, $w_1[x]$, $r_3[y]$, c_3 , c_1

T ₁		r ₁ [y]				w ₁ [x]			C ₁
T ₂	r ₂ [y]		w ₂ [y]	C ₂					
T ₃					r ₃ [x]		r ₃ [y]	C 3	

Serialisierbar: Serielle Reihenfolge der Ausführung möglich


Konfliktoperationen

$$r_3[X] < W_1[X]$$

 $r_1[y] < W_2[y]$
 $W_2[y] < r_3[y]$

Auswertungsreihenfolge

TAs zyklisch voneinander abhängig => Nicht Serialisierbar

Mehrbenutzersynchronisation Klassifikation von Historien (Rücksetzbar)

T ₁		r ₁ [y]				w ₁ [x]			c1
T ₂	r ₂ [y]		w ₂ [y]	c2					
T ₃					r ₃ [x]		r ₃ [y]	сЗ	

Rücksetzbar: Schreiber von Daten muss vor Leser commiten

Konfliktoperationen

 $r_3[x] < w_1[x]$ $r_1[y] < w_2[y]$ $w_2[y] < r_3[y]$

Commit-Reihenfolge $C_2 < C_3 < C_1$

Gewünschte C-Reihenfolge 2 vor 3

Tatsächliche C-Reihenfolge 2 vor 3

Bedingung erfüllt => Rücksetzbar

Mehrbenutzersynchronisation Klassifikation von Historien (ACA)

T ₁		r ₁ [y]				w ₁ [x]			c1
T ₂	r ₂ [y]		w ₂ [y]	c2					
T ₃					r ₃ [x]		r ₃ [y]	сЗ	

Vermeidet kaskadierendes Rücksetzen:

Schreiber von Daten muss commiten bevor Daten gelesen werden

Konfliktoperationen

$$r_3[x] < w_1[x]$$

$$\mathsf{r}_1[\mathsf{y}] < \mathsf{w}_2[\mathsf{y}]$$

$$w_2[y] < r_3[y] \\$$

$$\begin{array}{c} \text{geforderte Reihenfolge} \\ w_2[y] < c_2 < r_3[y] \end{array}$$

Geforderte Reihenfolge wird eingehalten => ACA

Mehrbenutzersynchronisation Klassifikation von Historien (Strikt)

T ₁		r ₁ [y]				w ₁ [x]			c1
T ₂	r ₂ [y]		w ₂ [y]	c2					
T ₃					r ₃ [x]		r ₃ [y]	сЗ	

Strikt: Schreiber von Daten muss commiten bevor Daten gelesen oder geschrieben werden

Konfliktoperationen

$$r_3[x] < w_1[x]$$

 $r_1[y] < w_2[y]$
 $w_2[y] < r_3[y]$

geforderte Reihenfolge $w_2[y] < c_2 < r_3[y]$

Geforderte Reihenfolge wird eingehalten => Strikt

Mehrbenutzersynchronisation

Online Tool

https://transactions.db.in.tum.de

Kapitel 12

Sicherheitsaspekte

Sicherheitsaspekte Überblick

RSA

- Welche Schlüssel gibt es? Public and Private Key
- Verschlüsseln, Entschlüsseln, Signieren
- Formeln müssen nicht auswendig gelernt werden

SQL-Injection

- http://db.in.tum.de/~schuele/sql_verzeichnis.html
- SQL Syntax (INSERT, UPDATE, DELETE, DROP)

k-Anonymität

- Angriffsarten und Anfälligkeiten

Kapitel 15

Deduktive Datenbanken

Deduktive Datenbanken Überblick

- Theorie (Wann ist ein Programm sicher bzw stratifizierbar?)
- Datalog Programme verstehen und ergänzen
- Definition neuer Regeln
- \ =, not(...), +
- Einfache Regeln zu SQL übersetzen und zurück
- Rekursion
- Domänenkalkül zu Datalog übersetzen
- Keine Aggregationsfunktionen!

http://datalog.db.in.tum.de/

Deduktive Datenbanken Regeln

Basisrelationen:

vorlesungen(VorlNr, Titel, SWS, PersNr) professoren(PersNr, Name, Rang, Raum)

Regelerzeugung und Join:

sokLV(T,S):-vorlesungen(_,T,S,P), professoren(P, "Sokrates",_,_), S>2.

Deduktive Datenbanken Rekursion

Datenbasis: direkt(Start, Ziel, Linie)

Ziel: indirekt(Start, Ziel, Stops)

- Basisfall => Fülle die Relation mit Anfangswerten indirekt(Start, Ziel, Stops) :- direkt(Start, Ziel, _), Stops = 0.
- 2. Rekursion => Nutze die Relation selbst und erweitere sie indirekt(Start, Ziel, StopsNeu) :- indirekt(Start, Station, Stops), direkt(Station, Ziel, _), StopsNeu = Stops + 1.

Kapitel 16

Verteilte Datenbanksysteme

Verteilte Datenbanksysteme Überblick

horizontale und vertikale Fragmentierung

- Korrektheit		Vertikal	Horizontal
- Rekonstruktion	Fragmentieren	π Projektion	$oldsymbol{\sigma}$ Selektion
	Vereinigen	⋈ Join	∪ Vereinigung

Quorum Consensus

- Lesequorum Q_r(A), Schreibquorum Q_w(A)
- $-2*Q_w(A) > W(A)$
- $-Q_r(A) + Q_w(A) > W(A)$

Chord Netzwerk

- Finden von Schlüsseln
- Fingertabellen ausfüllen

Bloom-Filter

R		
Pers	Raum	
Max	2	
Magda	7	
Tom	6	
Alex	2	
Julius	8	
Kathi	1	
Anna	16	
Gregor	8	
Thuy	7	
Domi	5	

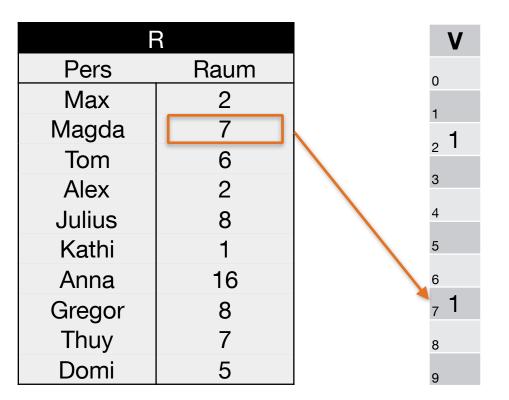
	V
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

S		
Raum	Gebäude	
1	IMETUM	
2	MI Büro	
4	Physik	
6	MW	
7	MI Raum	
8	ERI	
9	MI Bib	
10	Physik	
11	Chemie	

$$h(x) = x \mod 10$$

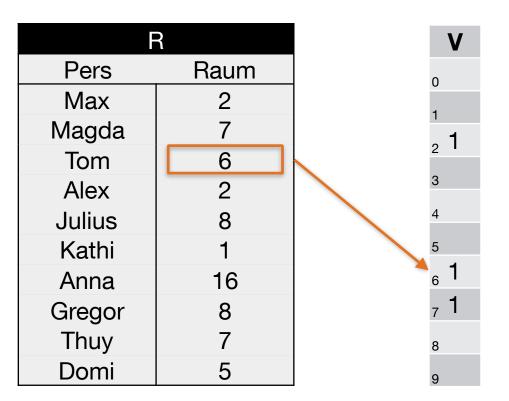
Bloom-Filter

	3	V
Pers	Raum	0
Max	2	1
Magda	7	. 1
Tom	6	2 1
Alex	2	3
Julius	8	4
Kathi	1	5
Anna	16	6
Gregor	8	7
Thuy	7	8
Domi	5	9


S		
Raum	Gebäude	
1	IMETUM	
2	MI Büro	
4	Physik	
6	MW	
7	MI Raum	
8	ERI	
9	MI Bib	
10	Physik	
11	Chemie	

$$h(2) = 2 \mod 10 = 2$$

Bloom-Filter


S		
Raum	Gebäude	
1	IMETUM	
2	MI Büro	
4	Physik	
6	MW	
7	MI Raum	
8	ERI	
9	MI Bib	
10	Physik	
11	Chemie	

$$h(7) = 7 \mod 10 = 7$$

Bloom-Filter

S		
Raum	Gebäude	
1	IMETUM	
2	MI Büro	
4	Physik	
6	MW	
7	MI Raum	
8	ERI	
9	MI Bib	
10	Physik	
11	Chemie	

$$h(6) = 6 \mod 10 = 6$$

Bloom-Filter

	R	V
Pers	Raum	0
Max	2	4
Magda	7	2 1
Tom	6	
Alex	2	3
Julius	8	4
Kathi	1	5
Anna	16	₆ 1
Gregor	8	₇ 1
Thuy	7	8
Domi	5	9

S		
Raum	Gebäude	
1	IMETUM	
2	MI Büro	
4	Physik	
6	MW	
7	MI Raum	
8	ERI	
9	MI Bib	
10	Physik	
11	Chemie	

$$h(2) = 2 \mod 10 = 2$$

Bloom-Filter

F	3	V
Pers	Raum	0
Max	2	4
Magda	7	2 1
Tom	6	
Alex	2	3
Julius	8	4
Kathi	1	5
Anna	16	₆ 1
Gregor	8	₇ 1
Thuy	7	8 1
Domi	5	9

S		
Raum	Gebäude	
1	IMETUM	
2	MI Büro	
4	Physik	
6	MW	
7	MI Raum	
8	ERI	
9	MI Bib	
10	Physik	
11	Chemie	

$$h(8) = 8 \mod 10 = 8$$

Bloom-Filter

F	3	V
Pers	Raum	0
Max	2	1 1
Magda	7	2 1
Tom	6	
Alex	2	3
Julius	8	4
Kathi	1	5
Anna	16	₆ 1
Gregor	8	₇ 1
Thuy	7	₈ 1
Domi	5	9

S		
Raum	Gebäude	
1	IMETUM	
2	MI Büro	
4	Physik	
6	MW	
7	MI Raum	
8	ERI	
9	MI Bib	
10	Physik	
11	Chemie	

$$h(1) = 1 \mod 10 = 1$$

Bloom-Filter

F	3	V
Pers	Raum	0
Max	2	, 1
Magda	7	2 1
Tom	6	
Alex	2	3
Julius	8	4
Kathi	1	5
Anna	16	₆ 1
Gregor	8	₇ 1
Thuy	7	₈ 1
Domi	5	9

S		
Raum	Gebäude	
1	IMETUM	
2	MI Büro	
4	Physik	
6	MW	
7	MI Raum	
8	ERI	
9	MI Bib	
10	Physik	
11	Chemie	

$$h(16) = 16 \mod 10 = 16$$

Bloom-Filter

	R	V
Pers	Raum	0
Max	2	1 1
Magda	7	2 1
Tom	6	
Alex	2	3
Julius	8	4
Kathi	1	5
Anna	16	₆ 1
Gregor	8	₇ 1
Thuy	7	₈ 1
Domi	5	9

S		
Raum	Gebäude	
1	IMETUM	
2	MI Büro	
4	Physik	
6	MW	
7	MI Raum	
8	ERI	
9	MI Bib	
10	Physik	
11	Chemie	

$$h(8) = 8 \mod 10 = 8$$

Bloom-Filter

F	3	V
Pers	Raum	0
Max	2	, 1
Magda	7	1
Tom	6	2 1
Alex	2	3
Julius	8	4
Kathi	1	5
Anna	16	₆ 1
Gregor	8	7 1
Thuy	7	₈ 1
Domi	5	9

S		
Raum	Gebäude	
1	IMETUM	
2	MI Büro	
4	Physik	
6	MW	
7	MI Raum	
8	ERI	
9	MI Bib	
10	Physik	
11	Chemie	

$$h(7) = 7 \mod 10 = 7$$

Bloom-Filter

	3	V
Pers	Raum	0
Max	2	, 1
Magda	7	2 1
Tom	6	
Alex	2	3
Julius	8	4
Kathi	1	₅ 1
Anna	16	6 1
Gregor	8	7 1
Thuy	7	8 1
Domi	5	9

S		
Raum	Gebäude	
1	IMETUM	
2	MI Büro	
4	Physik	
6	MW	
7	MI Raum	
8	ERI	
9	MI Bib	
10	Physik	
11	Chemie	

$$h(5) = 5 \mod 10 = 5$$

Bloom-Filter

2. Felder in V ohne hash-Treffer mit 0 füllen

R		
Pers	Raum	
Max	2	
Magda	7	
Tom	6	
Alex	2	
Julius	8	
Kathi	1	
Anna	16	
Gregor	8	
Thuy	7	
Domi	5	

	V
0	0
1	1
2	1
3	0
4	0
5	1
6	1
7	1
8	1
9	0

S		
Raum	Gebäude	
1	IMETUM	
2	MI Büro	
4	Physik	
6	MW	
7	MI Raum	
8	ERI	
9	MI Bib	
10	Physik	
11	Chemie	

$$h(x) = x \mod 10$$

Bloom-Filter

3. Bitvektor V an S schicken

R		
Pers	Raum	
Max	2	
Magda	7	
Tom	6	
Alex	2	
Julius	8	
Kathi	1	
Anna	16	
Gregor	8	
Thuy	7	
Domi	5	

	V
0	0
1	1
2	1
3	0
4	0
5	1
6	1
7	1
8	1
9	0

S		
Raum	Gebäude	
1	IMETUM	
2	MI Büro	
4	Physik	
6	MW	
7	MI Raum	
8	ERI	
9	MI Bib	
10	Physik	
11	Chemie	

$$h(x) = x \mod 10$$

Bloom-Filter

4. S überprüft mit h(x) den Bitvektor V

R		
Pers	Raum	
Max	2	
Magda	7	
Tom	6	
Alex	2	
Julius	8	
Kathi	1	
Anna	16	
Gregor	8	
Thuy	7	
Domi	5	

	V
0	0
1	1
2	1
3	0
4	0
5	1
6	1
7	1
8	1
9	0

S		
Raum	Gebäude	
1	IMETUM	
2	MI Büro	
4	Physik	
6	MW	
7	MI Raum	
8	ERI	
9	MI Bib	
10	Physik	
11	Chemie	

$$h(x) = x \mod 10$$

Bloom-Filter

4. S überprüft mit h(x) den Bitvektor V

/	Tupel	wird zur	Station	mit R	geschickt
---	-------	----------	---------	-------	-----------

R		
Pers	Raum	
Max	2	
Magda	7	
Tom	6	
Alex	2	
Julius	8	
Kathi	1	
Anna	16	
Gregor	8	
Thuy	7	
Domi	5	

V		S	
0 0	Raum	Gebäude	
₁ 1 ←	1 <i>v</i>	IMETUM	
₂ 1	2	MI Büro	
₃ 0	4	Physik	
₄ 0	6	MW	
₅ 1	7	MI Raum	
₆ 1	8	ERI	
₇ 1	9	MI Bib	
₈ 1	10	Physik	
₉ 0	11	Chemie	

$$h(1) = 1 \mod 10 = 1$$

Bloom-Filter

4. S überprüft mit h(x) den Bitvektor V

/	Tupel	wird zur	Station	mit R	geschickt
---	-------	----------	---------	-------	-----------

R		
Pers	Raum	
Max	2	
Magda	7	
Tom	6	
Alex	2	
Julius	8	
Kathi	1	
Anna	16	
Gregor	8	
Thuy	7	
Domi	5	

V	S			
o 0	Raum	Gebäude		
₁ 1	1 🗸	IMETUM		
2 1	 2 🗸	MI Büro		
₃ 0	4	Physik		
4 0	6	MW		
₅ 1	7	MI Raum		
₆ 1	8	ERI		
₇ 1	9	MI Bib		
₈ 1	10	Physik		
₉ 0	11	Chemie		

$$h(2) = 2 \mod 10 = 2$$

Bloom-Filter

4. S überprüft mit h(x) den Bitvektor V

/	Tupe	l wir	d zur	S	Station	mit	R	geschickt
						_	_	

R				
Pers	Raum			
Max	2			
Magda	7			
Tom	6			
Alex	2			
Julius	8			
Kathi	1			
Anna	16			
Gregor	8			
Thuy	7			
Domi	5			

V		S			
o O	Raum	Gebäude			
₁ 1	1 🗸	IMETUM			
2 1	2 🗸	MI Büro			
з 0	4 🗶	Physik			
4 0	6	MW			
₅ 1	7	MI Raum			
₆ 1	8	ERI			
₇ 1	9	MI Bib			
₈ 1	10	Physik			
0 e	11	Chemie			

$$h(4) = 4 \mod 10 = 4$$

Bloom-Filter

4. S überprüft mit h(x) den Bitvektor V

Tupel wird zur Station mit R geschick	⟨t
---------------------------------------	----

	3
Pers	Raum
Max	2
Magda	7
Tom	6
Alex	2
Julius	8
Kathi	1
Anna	16
Gregor	8
Thuy	7
Domi	5

V	S			
o 0	Raum	1	Gebäude	
₁ 1	1	<	IMETUM	
₂ 1	2	/	MI Büro	
₃ 0	4	X	Physik	
4 0	6	~	MW	
₅ 1	7		MI Raum	
₆ 1	8		ERI	
₇ 1	9		MI Bib	
₈ 1	10		Physik	
9 0	11		Chemie	

$$h(6) = 6 \mod 10 = 6$$

Bloom-Filter

4. S überprüft mit h(x) den Bitvektor V

/	Tupel	wird	zur	Station	mit R	geschickt
----------	-------	------	-----	---------	-------	-----------

R				
Pers	Raum			
Max	2			
Magda	7			
Tom	6			
Alex	2			
Julius	8			
Kathi	1			
Anna	16			
Gregor	8			
Thuy	7			
Domi	5			

V		3
o O	Raum	Gebäude
₁ 1	1 🗸	IMETUM
2 1	2 🗸	MI Büro
₃ 0	4 🗶	Physik
₄ 0	6 🗸	MW
₅ 1	7	MI Raum
₆ 1	8	ERI
₇ 1	9	MI Bib
₈ 1	10	Physik
9 0	11	Chemie

$$h(7) = 7 \mod 10 = 7$$

Bloom-Filter

4. S überprüft mit h(x) den Bitvektor V

✓ Tupel wird zur Station mit R geschickt
✗ Tupel wird nicht übermittelt

X	Iupel	wird	nicht	uber

F	3
Pers	Raum
Max	2
Magda	7
Tom	6
Alex	2
Julius	8
Kathi	1
Anna	16
Gregor	8
Thuy	7
Domi	5

	V			
0	0		Raum	1
1	1		1	V
2	1		2	V
3	0		4	X
4	0		6	X
5	1		7	V
6	1		8	V
7	1		9	
8	1		10	
_	0		11	

	3
Raum	Gebäude
1 🗸	IMETUM
2 🗸	MI Büro
4 x	Physik
6 🗸	MW
7 🗸	MI Raum
8	ERI
9	MI Bib
10	Physik
11	Chemie

$$h(8) = 8 \mod 10 = 8$$

Bloom-Filter

4. S überprüft mit h(x) den Bitvekto	or V	,
--------------------------------------	------	---

/	Tupel	wird	zur	Station	mit R	gescl	nickt
V	Tunal	wird	nich	t üborm	sittalt		

F	3
Pers	Raum
Max	2
Magda	7
Tom	6
Alex	2
Julius	8
Kathi	1
Anna	16
Gregor	8
Thuy	7
Domi	5

V	
o 0	
₁ 1	
2 1	
₃ 0 ₄ 0	
4 0	
₅ 1	
₆ 1	
₇ 1	
₈ 1	
9 0	

	ξ	S
Raum		Gebäude
1	/	IMETUM
2	/	MI Büro
4	X	Physik
6	/	MW
7	/	MI Raum
8	/	ERI
9	X	MI Bib
10		Physik
11		Chemie

$$h(9) = 9 \mod 10 = 9$$

Bloom-Filter

Pers

Max

Magda

Tom

Alex

Julius

Kathi

Anna

Gregor

Thuy

Domi

R

4.	S	über	prüft	mit	h(x)	den	Bitvekt	or \	/
----	---	------	-------	-----	------	-----	---------	------	---

Raum

6

2

8

16

8

5

0 0	
1 1	
2 1	
2 1 3 0 4 0	
4 0	
₅ 1	

V

Tupel wird zur Station mit R geschick	/	Tupel	wird zur	Station	mit R	geschick
---------------------------------------	---	-------	----------	---------	-------	----------

		S
	Raum	Gebäude
	1 🗸	IMETUM
	2 🗸	MI Büro
	4 🗶	Physik
	6 🗸	MW
	7 🗸	MI Raum
	8 🗸	ERI
	9 🗶	MI Bib
1	10 X	Physik
	11	Chemie

$$h(10) = 10 \mod 10 = 0$$

$$h(10) = 10 \text{ mod}$$

Bloom-Filter

4. S überprüft mit h(x) den Bitvektor V

✓ Tupel wird zur Station mit R geschick	d
✗ Tupel wird nicht übermittelt	

F	3
Pers	Raum
Max	2
Magda	7
Tom	6
Alex	2
Julius	8
Kathi	1
Anna	16
Gregor	8
Thuy	7
Domi	5

V				5
0 0		Raun	n	Gebäude
1 1		1	/	IMETUM
2 1		2	/	MI Büro
₃ 0		4	X	Physik
4 0		6	/	MW
₅ 1		7	/	MI Raum
₆ 1		8	/	ERI
₇ 1		9	X	MI Bib
₈ 1	\	10	X	Physik
9 0		11		Chemie

$$h(11) = 11 \mod 10 = 1$$

Bloom-Filter

5. Übermitteln der Treffer zur Station R

R		
Pers	Raum	
Max	2	
Magda	7	
Tom	6	
Alex	2	
Julius	8	
Kathi	1	
Anna	16	
Gregor	8	
Thuy	7	
Domi	5	

	V
0	0
1	1
2	1
3	0
4	0
5	1
6	1
7	1
8	1
9	0

- ✓ Tupel wird zur Station mit R geschickt
- ✗ Tupel wird nicht übermittelt

S		
Raum		Gebäude
1	/	IMETUM
2	/	MI Büro
4	X	Physik
6	/	MW
7	/	MI Raum
8	/	ERI
9	X	MI Bib
10	X	Physik
11	/	Chemie

 $h(x) = x \mod 10$

Bloom-Filter

False positives werden übermittelt und von R beim Join verworfen.

R		
Pers	Raum	
Max	2	
Magda	7	
Tom	6	
Alex	2	
Julius	8	
Kathi	1	
Anna	16	
Gregor	8	
Thuy	7	
Domi	5	

	V
0	0
1	1
2	1
3	0
4	0
5	1
6	1
7	1
8	1
9	0

$$h(x) = x \mod 10$$

False positive Rate

- ✓ Tupel wird zur Station mit R geschickt
- X Tupel wird nicht übermittelt

S		
Raum		Gebäude
1	/	IMETUM
2	/	MI Büro
4	X	Physik
6	/	MW
7	/	MI Raum
8	/	ERI
9	X	MI Bib
10	X	Physik
11	/	Chemie

Kapitel 17

Betriebliche Anwendungen

Betriebliche Anwendungen Überblick

Apriori

- Frequent Itemsets bestimmen
- Konfidenz von Assoziationsregeln ableiten

Skyline

```
select MatrNr from Klausur k skyline of k.Vorbereitungszeit min, k.Note min
select MatrNr from Klausur k where not exists (
  select * from klausur dom where
    dom.Vorbereitungszeit <= k.Vorbereitungszeit and dom.Note <= k.Note and
    (dom.Vorbereitungszeit < k.Vorbereitungszeit or dom.Note < k.Note)
)</pre>
```

Threshold/NRA

- Ausführen und Verständnis der Algorithmen
- Unterschiede zwischen den Algorithmen

Online Transaction Processing

- realisiert "operationale" Tagesgeschäfte ("mission-critical")
- Charakterisierung
 - Hoher Parallelitätsgrad
 - Viele kurze TA (Tausende pro Sekunde)
 - begrenzte Datenmenge pro TA
 - operieren auf jüngstem, aktuell gültigem Zustand der DB
 - Hohe Verfügbarkeit muss gewährleistet sein
- Normalisierte Relationen (möglichst geringe Update-Kosten)
- Wenige Indexe (Fortschreibungskosten)

Online Analytical Processing

zur strategischen Unternehmensplanung

große Datenmengen

• greift häufig auch auf historische Daten zu

- → gewährt Rückschlüsse auf Entwicklungen
- → Bestandteil von Decision-Support-Systeme/Management-Informationssysteme

SQLWindow Functions

- Sehr vielseitig und geeignet für
 - Zeitliche Analysen
 - Rangbasierte Anfragen
 - Top-K
 - Gleitender Durchschnitt
 - Kumulative/Wachsende Summe
- Window Functions werden nach GROUP BY und vor ORDER BY ausgewertet

Window Funktionen

erdb		
name	übung	punkte
Thuy	1	1
Anna	1	1
Domi	1	2
Tobi	2	1
Thuy	2	1
Thuy	3	2
Anna	3	1
Domi	3	1
Thuy	4	3
Tobi	5	2
Domi	5	1
Anna	5	1
Tobi	6	2
Thuy	6	1

SELECT name, übung, (100.0*punkte)/
sum(punkte)
over (partition by übung) as prozent
FROM erdb

Window Funktionen

erdb		
name	übung	punkte
Thuy	1	1
Anna	1	1
Domi	1	2
Tobi	2	1
Thuy	2	1
Thuy	3	2
Anna	3	1
Domi	3	1
Thuy	4	3
Tobi	5	2
Domi	5	1
Anna	5	1
Tobi	6	2
Thuy	6	1

i3erdb@in.tum.de | ERDB Zentralübung 2019

SELECT name, übung, (100.0*punkte)/ sum(punkte)

over (partition by übung) as prozent FROM erdb

Ergebnis		
name	übung	prozent
Thuv	1	25.0
Anna	1	25.0
Domi	1	50.0
Tobi	2	50.0
Thuv	2	50.0
Thuy	3	50.0
Anna	3	25.0
Domi	3	25.0
Thuv	4	100.0
Tobi	5	50.0
Domi	5	25.0
Anna	5	25.0
Tobi	6	66.7
Thuy	6	33.3

Window Funktionen

erdb		
name	übung	punkte
Anna	1	1
Anna	3	1
Anna	5	1
Domi	1	2
Domi	3	1
Domi	5	1
Thuy	1	1
Thuy	2	1
Thuy	3	2
Thuy	4	3
Thuy	6	1
Tobi	2	1
Tobi	5	2
Tobi	6	2

SELECT name, übung, sum(punkte)
over (partition by name
order by übung)

FROM erdb

Ergebnis		
name	übung	sum
Anna	1	1
Anna	3	2
Anna	5	3
Thuv	1	1
Thuv	2	2
Thuy	3	4
Thuy	4	7
Thuv	6	8
Domi	1	2
Domi	3	3
Domi	5	4
Tobi	2	1
Tobi	5	3
Tobi	6	5

Betriebliche Anwendungen SELECT name, übung, sum(punkte)

Window Funktionen

erdb		
name	übung	punkte
Anna	1	1
Anna	3	1
Anna	5	1
Domi	1	2
Domi	3	1
Domi	5	1
Thuy	1	1
Thuy	2	1
Thuy	3	2
Thuy	4	3
Thuy	6	1
Tobi	2	1
Tobi	5	2
Tobi	6	2

SELECT name, übung, sum(punkte)
over (partition by name
order by übung
range between unbounded
preceding and current row)

FROM erdb

Ergebnis		
name	übung	sum
Anna	1	1
Anna	3	2
Anna	5	3
Thuv	1	1
Thuv	2	2
Thuy	3	4
Thuy	4	7
Thuv	6	8
Domi	1	2
Domi	3	3
Domi	5	4
Tobi	2	1
Tobi	5	3
Tobi	6	5

Betriebliche Anwendungen SELECT name, übung, sum(punkte)

Window Funktionen

erdb		
name	übung	punkte
Anna	1	1
Anna	3	1
Anna	5	1
Domi	1	2
Domi	3	1
Domi	5	1
Thuy	1	1
Thuy	2	1
Thuy	3	2
Thuy	4	3
Thuy	6	1
Tobi	2	1
Tobi	5	2
Tobi	6	2

SELECT name, übung, sum(punkte)
over (partition by name
order by übung
range between 1 preceding
and 1 following)

FROM erdb

Ergebnis		
name	übung	sum
Anna	1	1
Anna	3	1
Anna	5	1
Thuv	1	2
Thuv	2	4
Thuy	3	6
Thuy	4	5
Thuv	6	1
Domi	1	2
Domi	3	1
Domi	5	1
Tobi	2	1
Tobi	5	4
Tobi	6	4

Window Funktionen

erdb		
name	übung	punkte
Anna	1	1
Anna	3	1
Anna	5	1
Domi	1	2
Domi	3	1
Domi	5	1
Thuy	1	1
Thuy	2	1
Thuy	3	2
Thuy	4	3
Thuy	6	1
Tobi	2	1
Tobi	5	2
Tobi	6	2

SELECT name, übung, sum(punkte)
over (partition by name
order by übung
rows between 1 preceding
and 1 following)

FROM erdb

Ergebnis		
name	übung	sum
Anna	1	2
Anna	3	3
Anna	5	2
Thuv	1	2
Thuv	2	4
Thuy	3	6
Thuy	4	6
Thuv	6	4
Domi	1	3
Domi	3	4
Domi	5	2
Tobi	2	3
Tobi	5	5
Tobi	6	4

Window Funktionen

erdb		
name	übung	punkte
Anna	1	1
Anna	3	1
Anna	5	1
Domi	1	2
Domi	3	1
Domi	5	1
Thuy	1	1
Thuy	2	1
Thuy	3	2
Thuy	4	3
Thuy	6	1
Tobi	2	1
Tobi	5	2
Tobi	6	2

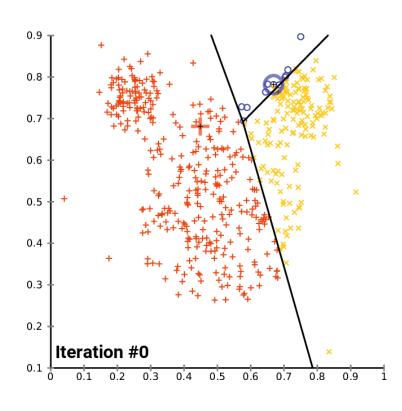
SELECT name, sum(punkte) as gesamt FROM erdb
GROUP BY name
ORDER BY gesamt desc

erdb nach group			
name	gesamt		
Thuy	8		
Tobi	5		
Domi	4		
Anna	3		

Window Funktionen

erdb nach group					
name gesamt					
Thuy	8				
Tobi	5				
Domi	4				
Anna	3				

SELECT name, gesamt,
rank() over (order by gesamt desc)
FROM (
SELECT name, sum(punkte) as
gesamt
FROM erdb
GROUP BY name desc)


Ergebnis				
name	gesamt	rank		
Thuy	8	1		
Tobi	5	2		
Domi	4	3		
Anna	3	4		

Clustering K-Means

- Teilen von Datenpunkten in konvexe Cluster
- Minimiere die Summe der Abstände zu den Cluster Mittelpunkten
- Anzahl der Cluster von Nutzer bestimmt
- Auswahl der Startpunkte bietet viel Potenzial für Optimierung

Kapitel 18

Hauptspeicher-Datenbanken

Betriebliche Anwendungen Überblick

Adaptive Radix Tree

- Finden von Schlüsseln
- Einfügen von Schlüsseln
- Verschiedene Knoten Typen

MVCC mit Precision Locking

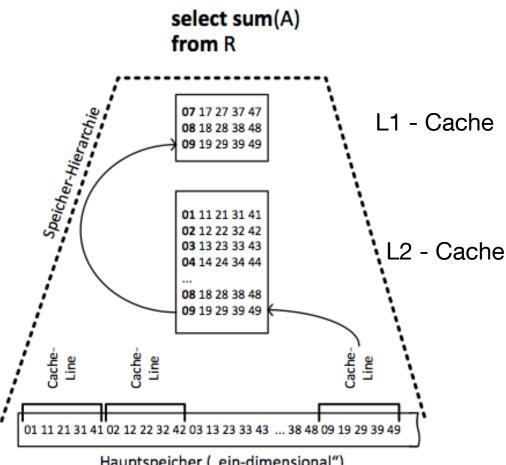
- Lesende Anfragen sind immer erlaubt: kein Precision Locking
- Falls schreibende Anfrage: Überlappender Prädikatbereich?
- Falls ja, dann BOT und commit-Reihenfolge beachten

Hauptspeicher-Datenbanken

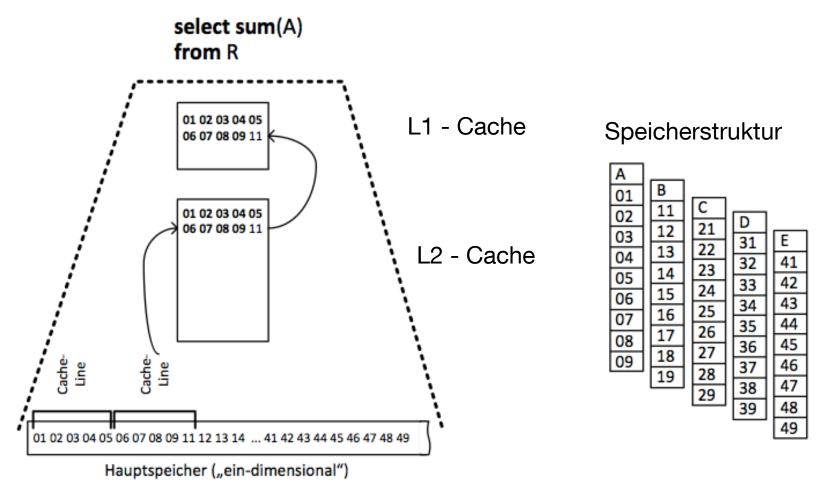
Zugriffslücke < 1 ns Register 2 ns L1-Cache 20 ns L2-Cache 100-1000 ns Hauptspeicher Zugriffslücke ~105 5 ms Festplatte Sekunden Archivspeicher

Ro)W	St	or	e

Name	MatrNr	Semester	Fach	Nebenfach
Alex	362148	6	Info	Medizin
Max	362139	6	Info	Physik
David	361299	10	Info	MaschBau
Johannes	362033	8	Info	Mathe
Andre	362101	10	Info	Mathe


Name	MatrNr	Semester	Fach	Nebenfach
Alex	362148	6	Info	Medizin
Max	362139	6	Info	Physik
David	361299	10	Info	MaschBau
Johannes	362033	8	Info	Mathe
Andre	362101	10	Info	Mathe

Hauptspeicher-Datenbanken **Row-Store**


Speicherstruktur

Α	В	С	D	Е
01	11	21	31	41
02	12	22	32	42
03	13	23	33	43
04	14	24	34	44
05	15	25	35	45
06	16	26	36	46
07	17	27	37	47
80	18	28	38	48
09	19	29	39	49

Hauptspeicher ("ein-dimensional")

Die Anzahl der Tupel in der Relation Studenten ist nicht bekannt, wir verwenden |S| als Abschätzung. Für die MatrNr existiert ein Index.

Row Store

Name (32Byte)	MatrNr (3Byte)	Semester (1 Byte)	Fach (4Byte)	Nebenfach (16 Byte)
Alex	362148	6	Info	Medizin
Max	362139	6	Info	Physik
David	361299	10	Info	MaschBau
Johannes	362033	8	Info	Mathe
Andre	262101	10	Info	Mathe

Name (32Byte)	MatrNr (3Byte)	Semester (1 Byte)	Fach (4Byte)	Nebenfach (16 Byte)
Alex	362148	6	Info	Medizin
Max	362139	6	Info	Physik
David	361299	10	Info	MaschBau
Johannes	362033	8	Info	Mathe
Andre	262101	10	Info	Mathe
	•••			

select * from Studenten;

Row Store

Name (32Byte)	MatrNr (3Byte)	Semester (1 Byte)	Fach (4Byte)	Nebenfach (16 Byte)
Alex	362148	6	Info	Medizin
Max	362139	6	Info	Physik
David	361299	10	Info	MaschBau
Johannes	362033	8	Info	Mathe
Andre	262101	10	Info	Mathe

Die Anzahl der Tupel in der Relation Studenten ist nicht bekannt, wir verwenden |S| als Abschätzung.

Für die MatrNr existiert ein Index. 1 B = 1 Byte (8Bit)

Name (32Byte)	MatrNr (3Byte)	Semester (1 Byte)	Fach (4Byte)	Nebenfach (16 Byte)
Alex	362148	6	Info	Medizin
Max	362139	6	Info	Physik
David	361299	10	Info	MaschBau
Johannes	362033	8	Info	Mathe
Andre	262101	10	Info	Mathe

select *

from Studenten;

Row Store

Name (32Byte)	MatrNr (3Byte)	Semester (1 Byte)	Fach (4Byte)	Nebenfach (16 Byte)
Alex	362148	6	Info	Medizin
Max	362139	6	Info	Physik
David	361299	10	Info	MaschBau
Johannes	362033	8	Info	Mathe
Andre	262101	10	Info	Mathe

Die Anzahl der Tupel in der Relation Studenten ist nicht bekannt, wir verwenden |S| als Abschätzung.

Für die MatrNr existiert ein Index. 1 B = 1 Byte (8Bit)

RowStore:

1 Tupel:
$$32B + 3B + 1B + 4B + 16B = 56B$$

#Cachelines =
$$\lceil |S| * (56Byte/64Byte) \rceil$$

= $\lceil |S| * (7/8) \rceil$

select * from Studenten;

ColumnStore:

#Cachelines = $\lceil |S|^*(32B/64B) \rceil + \lceil |S|^*(3B/64B) \rceil + \lceil |S|^*(1B/64B) \rceil + \lceil |S|^*(4B/64B) \rceil + \lceil |S|^*(16B/64B) \rceil$

- $= \lceil |S|^*(32B+3B+1B+4B+16B)/64B \rceil$
- $= \lceil |S| * 56B/64B \rceil$
- $= \lceil |S| * 7/8 \rceil$

Die Anzahl der Tupel in der Relation Studenten ist nicht bekannt, wir verwenden |S| als Abschätzung. Für die MatrNr existiert ein Index. 1 B = 1 Byte (8Bit)

Name (32Byte)	MatrNr (3Byte)	Semester (1 Byte)	Fach (4Byte)	Nebenfach (16 Byte)
Alex	362148	6	Info	Medizin
Max	362139	6	Info	Physik
David	361299	10	Info	MaschBau
Johannes	362033	8	Info	Mathe
Andre	262101	10	Info	Mathe

select Name, MatrNr from Studenten where Semester = 10; Row Store

Name (32Byte)	MatrNr (3Byte)	Semester (1 Byte)	Fach (4Byte)	Nebenfach (16 Byte)
Alex	362148	6	Info	Medizin
Max	362139	6	Info	Physik
David	361299	10	Info	MaschBau
Johannes	362033	8	Info	Mathe
Andre	262101	10	Info	Mathe

Die Anzahl der Tupel in der Relation Studenten ist nicht bekannt, wir verwenden |S| als Abschätzung.

Für die MatrNr existiert ein Index. 1 B = 1 Byte (8Bit)

Name (32Byte)	MatrNr (3Byte)	Semester (1 Byte)	Fach (4Byte)	Nebenfach (16 Byte)
Alex	362148	6	Info	Medizin
Max	362139	6	Info	Physik
David	361299	10	Info	MaschBau
Johannes	362033	8	Info	Mathe
Andre	262101	10	Info	Mathe

select Name, MatrNr from Studenten where Semester = 10; Row Store

Name (32Byte)	MatrNr (3Byte)	Semester (1 Byte)	Fach (4Byte)	Nebenfach (16 Byte)
Alex	362148	6	Info	Medizin
Max	362139	6	Info	Physik
David	361299	10	Info	MaschBau
Johannes	362033	8	Info	Mathe
Andre	262101	10	Info	Mathe

Die Anzahl der Tupel in der Relation Studenten ist nicht bekannt, wir verwenden |S| als Abschätzung.

Für die MatrNr existiert ein Index. 1 B = 1 Byte (8Bit)

RowStore:

#Cachelines =
$$\lceil |S| * (56Byte/64Byte) \rceil$$

= $\lceil |S| * (7/8) \rceil$
= $\lceil |S| * 0,875 \rceil$

select Name, MatrNr from Studenten where Semester = 10;

ColumnStore:

#Cachelines = $\lceil |S| * 1B/64B \rceil + \lceil |S| * 32B/64B * 1/10 \rceil + \lceil |S| * 3B/64B * 1/10 \rceil$ = $\lceil |S| * (1B/64B + 32B/640B + 3B/640B) \rceil$ = $\lceil |S| * (10B + 32B + 3B)/640B \rceil$ = $\lceil |S| * 45/640 \rceil$ = $\lceil |S| * 0.070 \rceil$

Die Anzahl der Tupel in der Relation Studenten ist nicht bekannt, wir verwenden |S| als Abschätzung. Für die MatrNr existiert ein Index. 1 B = 1 Byte (8Bit) Schätzung der Selektivität von 1/10 ist unrealistisch, insbesondere die Folge das nur 1/10 der CLs gelesen werden. Erfüllt nur den Zweck eines Beispiels.

Name (32Byte)	MatrNr (3Byte)	Semester (1 Byte)	Fach (4Byte)	Nebenfach (16 Byte)
Alex	362148	6	Info	Medizin
Max	362139	6	Info	Physik
David	361299	10	Info	MaschBau
Johannes	362033	8	Info	Mathe
Andre	262101	10	Info	Mathe

select Name, MatrNr from Studenten where MatrNr = %; Row Store

Name (32Byte)	MatrNr (3Byte)	Semester (1 Byte)	Fach (4Byte)	Nebenfach (16 Byte)
Alex	362148	6	Info	Medizin
Max	362139	6	Info	Physik
David	361299	10	Info	MaschBau
Johannes	362033	8	Info	Mathe
Andre	262101	10	Info	Mathe

Die Anzahl der Tupel in der Relation Studenten ist nicht bekannt, wir verwenden |S| als Abschätzung.

Für die MatrNr existiert ein Index. 1 B = 1 Byte (8Bit)

Name (32Byte)	MatrNr (3Byte)	Semester (1 Byte)	Fach (4Byte)	Nebenfach (16 Byte)
Alex	362148	6	Info	Medizin
Max	362139	6	Info	Physik
David	361299	10	Info	MaschBau
Johannes	362033	8	Info	Mathe
Andre	262101	10	Info	Mathe
	•••			

select Name, MatrNr from Studenten where MatrNr = %; Row Store

Name (32Byte)	MatrNr (3Byte)	Semester (1 Byte)	Fach (4Byte)	Nebenfach (16 Byte)
Alex	362148	6	Info	Medizin
Max	362139	6	Info	Physik
David	361299	10	Info	MaschBau
Johannes	362033	8	Info	Mathe
Andre	262101	10	Info	Mathe

Die Anzahl der Tupel in der Relation Studenten ist nicht bekannt, wir verwenden |S| als Abschätzung.

Für die MatrNr existiert ein Index. 1 B = 1 Byte (8Bit)

RowStore:

 $\#Cachelines = \lceil 56B/64B \rceil = 1$

Hier wird der Index von MatrNr genutzt.
Deshalb muss nur das Tupel mit der
gesuchten MatrNr geladen werden.
Dieser umfasst 1 Cacheline.

select Name, MatrNr from Studenten where MatrNr = %;

ColumnStore:

 $\#Cachelines = \lceil 32B/64B \rceil + \lceil 3B/64B \rceil = 2$

Hier wird ebenfalls wieder der Index von MatrNr genutzt, sodass nur der Namen und die MatrNr des Tupels mit der gesuchten MatrNr aus den jeweiligen Tabellengeladen wird.

Die Anzahl der Tupel in der Relation Studenten ist nicht bekannt, wir verwenden |S| als Abschätzung. Für die MatrNr existiert ein Index. 1 B = 1 Byte (8Bit)

Name (32Byte)	MatrNr (3Byte)	Semester (1 Byte)	Fach (4Byte)	Nebenfach (16 Byte)
Alex	362148	6	Info	Medizin
Max	362139	6	Info	Physik
David	361299	10	Info	MaschBau
Johannes	362033	8	Info	Mathe
Andre	262101	10	Info	Mathe

Insert into Studenten VALUES(...);

Row Store

Name (32Byte)	MatrNr (3Byte)	Semester (1 Byte)	Fach (4Byte)	Nebenfach (16 Byte)
Alex	362148	6	Info	Medizin
Max	362139	6	Info	Physik
David	361299	10	Info	MaschBau
Johannes	362033	8	Info	Mathe
Andre	262101	10	Info	Mathe

Die Anzahl der Tupel in der Relation Studenten ist nicht bekannt, wir verwenden |S| als Abschätzung.

Für die MatrNr existiert ein Index. 1 B = 1 Byte (8Bit)

Name (32Byte)	MatrNr (3Byte)	Semester (1 Byte)	Fach (4Byte)	Nebenfach (16 Byte)
Alex	362148	6	Info	Medizin
Max	362139	6	Info	Physik
David	361299	10	Info	MaschBau
Johannes	362033	8	Info	Mathe
Andre	262101	10	Info	Mathe

Insert into Studenten VALUES(...);

Row Store

Name (32Byte)	MatrNr (3Byte)	Semester (1 Byte)	Fach (4Byte)	Nebenfach (16 Byte)
Alex	362148	6	Info	Medizin
Max	362139	6	Info	Physik
David	361299	10	Info	MaschBau
Johannes	362033	8	Info	Mathe
Andre	262101	10	Info	Mathe

Die Anzahl der Tupel in der Relation Studenten ist nicht bekannt, wir verwenden |S| als Abschätzung.

Für die MatrNr existiert ein Index. 1 B = 1 Byte (8Bit)

RowStore:

 $\#Cachelines = \lceil 56B/64B \rceil = 1$

Insert into Studenten VALUES(...);

ColumnStore:

#Cachelines =
$$\lceil 32B/64B \rceil + \lceil 3B/64B \rceil + \lceil 1B/64B \rceil + \lceil 4B/64B \rceil + \lceil 16B/64B \rceil = 5$$

Da jedes Attribut muss einzeln in die jeweilige Tabelle eingefügt werden.

Die Anzahl der Tupel in der Relation Studenten ist nicht bekannt, wir verwenden |S| als Abschätzung. Für die MatrNr existiert ein Index. 1 B = 1 Byte (8Bit)

Name (32Byte)	MatrNr (3Byte)	Semester (1 Byte)	Fach (4Byte)	Nebenfach (16 Byte)
Alex	362148	6	Info	Medizin
Max	362139	6	Info	Physik
David	361299	10	Info	MaschBau
Johannes	362033	8	Info	Mathe
Andre	262101	10	Info	Mathe

Fragen FAQs

Notenbonus gilt für Haupt- und Wiederholungsklausur Notenbonus gilt nicht für nächstes Jahr (ERDB 2020)

Taschenrechner ist nicht erlaubt! Beide Klausuren werden gleich schwer, aber decken womöglich andere Bereiche ab.