

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

Übung zur Vorlesung Einsatz und Realisierung von Datenbanksystemen im SoSe16

Moritz Kaufmann (moritz.kaufmann@tum.de) http://db.in.tum.de/teaching/ss16/impldb/

Blatt Nr. 01

Hausaufgabe 1

Demonstrieren Sie anhand eines Beispiels, dass man die Strategien force und $\neg steal$ nicht kombinieren kann, wenn parallele Transaktionen gleichzeitig Änderungen an Datenobjekten innerhalb einer Seite durchführen. Betrachten Sie dazu z.B. die in Abbildung 1 dargestellte Seitenbelegung, bei der die Seite P_A die beiden Datensätze A und D enthält. Entwerfen Sie eine verzahnte Ausführung zweier Transaktionen, bei der eine Kombination aus force und $\neg steal$ ausgeschlossen ist.

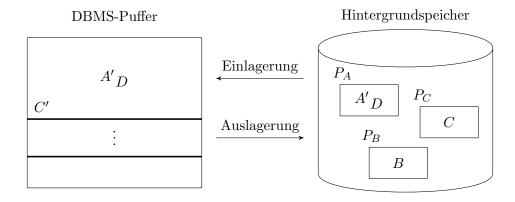


Abbildung 1: Schematische Darstellung der (zweistufigen) Speicherhierarchie

Siehe Übungsbuch

Hausaufgabe 2

Zeigen Sie, dass es für die Erzielung der Idempotenz der Redo-Phase notwendig ist, die – und nur die – LSN einer tatsächlich durchgeführten Redo-Operation in der betreffenden Seite zu vermerken.

Was würde passieren, wenn man in der Redo-Phase gar keine LSN-Einträge in die Datenseiten schriebe?

Was wäre, wenn man auch LSN-Einträge von Log-Records, für die die *Redo*-Operation nicht ausgeführt wird, in die Datenseiten übertragen würde?

Was passiert, wenn der Kompensationseintrag geschrieben wurde, und dann noch vor der Ausführung des *Undo* das Datenbanksystem abstürzt?

Siehe Übungsbuch

Hausaufgabe 3

In Abbildung 2 ist die verzahnte Ausführung der beiden Transaktionen T_1 und T_2 und das zugehörige Log auf der Basis logischer Protokollierung gezeigt. Wie sähe das Log bei physischer Protokollierung aus, wenn die Datenobjekte $A,\,B$ und C die Initialwerte 1000, 2000 und 3000 hätten?

Schritt	T_1	T_2	Log
Schrie	11	12	[LSN, TA, PageID, Redo, Undo, PrevLSN]
1.	BOT		$[\#1, T_1, \mathbf{BOT}, 0]$
2.	$r(A,a_1)$		
3.		BOT	$[\#2, T_2, \mathbf{BOT}, 0]$
4.		$r(C, c_2)$	
5.	$a_1 := a_1 - 50$		
6.	$w(A, a_1)$		$[\#3, T_1, P_A, A=50, A+50, \#1]$
7.		$c_2 := c_2 + 100$	
8.		$w(C, c_2)$	$[\#4, T_2, P_C, C+=100, C-=100, \#2]$
9.	$r(B,b_1)$		
10.	$b_1 := b_1 + 50$		
11.	$w(B,b_1)$		$[\#5, T_1, P_B, B+=50, B-=50, \#3]$
12.	commit		$[\#6, T_1, \mathbf{commit}, \#5]$
13.		$r(A, a_2)$	
14.		$a_2 := a_2 - 100$	
15.		$w(A, a_2)$	$[\#7, T_2, P_A, A=100, A+100, \#4]$
16.		\mathbf{commit}	$[\#8, T_2, \mathbf{commit}, \#7]$

Abbildung 2: Verzahnte Ausführung zweier Transaktionen und das erstellte Log

Siehe Übungsbuch