
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Matching and Evaluation of Disjunctive Predicates
for Data Stream Sharing

Richard Kuntschke Alfons Kemper

�����
���	

����

TUM-I0615
August 06

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-08-I0615-100/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c©2006

Druck: Institut für Informatik der
Technischen Universität München

Matching and Evaluation of Disjunctive Predicates
for Data Stream Sharing∗

Richard Kuntschke Alfons Kemper

Lehrstuhl Informatik III: Datenbanksysteme
Fakultät für Informatik

Technische Universität München
Boltzmannstraße 3, D-85748 Garching bei München, Germany

{richard.kuntschke|alfons.kemper}@in.tum.de

Abstract

Traditional query optimization largely neglects the handling of disjunctive predicates. However,
new and evolving applications and optimization techniques, e. g., in the domain of data stream man-
agement systems (DSMSs), make the treatment of disjunctive predicates a necessity.

In this paper, we introduce and discuss methods for matching and evaluating disjunctive predi-
cates in the context of data stream sharing in a DSMS. Nevertheless, the presented techniques are
generic and can be applied to other domains as well. Data stream sharing uses one data stream for
satisfying multiple similar continuous queries in a network. Sharing an existing stream for answering
a new query requires, among other things, the selection predicates of the new query to be matched
with the predicates describing the contents of the shared stream. Predicate matching is a combination
of predicate implication checking and predicate relaxation. If no match is found, sharing can be en-
abled by widening the stream, e. g., by relaxing a selection predicate, which can introduce additional
disjunctions in the stream predicates. We propose heuristics as well as an exact algorithm for solving
the predicate matching problem and discuss the use of multi-dimensional indexing for speeding up
the matching and evaluation processes for interval-based disjunctive predicates. To the best of our
knowledge, this is the first work to investigate the use of multi-dimensional indexes for matching
and continuously evaluating disjunctive predicates. An extensive experimental study compares and
evaluates the presented algorithms and reveals a performance gain of several orders of magnitude for
predicate matching and evaluation through multi-dimensional indexing.

1 Introduction

Except for a few publications which have dealt with the issue in the database field [4, 6, 9, 20, 24], dis-
junctive predicates, which are known to be complex to handle, have largely been neglected in the context
of query optimization for traditional database management systems (DBMSs) and also for domains like,
e. g., active databases [30] and publish&subscribe systems. Instead, query optimization generally limits
itself to considering conjunctive query predicates since well-known ways for efficiently managing such
predicates exist. The main argument for justifying the neglect of disjunctive predicates has been that
such predicates do not occur often in practice. While this argument might be true for traditional database
systems and applications, it is not correct for new and evolving applications and optimization techniques,
e. g., in the domains of semantic caching [10] and data stream management systems (DSMSs). Consider-
ing DSMSs for example, new network-aware optimization techniques that take into account the current

∗This research is supported by the German Federal Ministry of Education and Research (BMBF) within the D-Grid initiative
under contract 01AK804F and by Microsoft Research Cambridge (MSRC) under contract 2005-041.

1

Super-Peer
Backbone

SP4 SP6

SP0 SP2

SP7

SP3SP1

SP5

Stream 0

P0

P1

P3

P2

Query 1

Query 3

Query 2

Q
1

∨
Q

2
∨

Q
3

Q2

Q1 ∨
 Q

3

Q3 Q3

Q1

Q2

Figure 1: Example DSMS Scenario

network state for deciding how to distribute query processing operators among network nodes and how
to route data streams through the network can introduce disjunctions in predicates. We focus on disjunc-
tive predicates consisting of disjunctively combined conjunctive predicates. Each conjunctive predicate
forms a multi-dimensional hyperrectangle with edges parallel to the coordinate axes in the data space.
Our approaches can also be used as an approximation for more complex shaped predicates. However,
this is not dealt with in this paper. Although we use a DSMS example scenario, it is worth noting that
the techniques presented in this paper are generic and can be applied to other domains as well.

As an example for a DSMS that needs to handle disjunctive predicates during query optimization and
evaluation consider Figure1 and the following setting. The DSMS is based on a hierarchical P2P network
where peers are classified into super-peers (SP0 to SP7 in Figure 1) and thin-peers (P0 to P3 in Figure 1).
Super-peers usually are stationary powerful servers with extensive query processing capabilities that
form a stable super-peer backbone network. Thin-peers can register themselves at any super-peer and
deliver data streams to the network (e. g., Stream 0 delivered by P0 in Figure 1) or register continuous
queries—also simply called queries or subscriptions in the following—over data streams present in the
network (e. g., Queries 1 to 3 registered by P1 to P3 in Figure 1). The super-peers are responsible for
processing such queries and delivering the results back to the corresponding thin-peers. For each new
query that is registered in the network, the optimizer has to decide where, i. e., at which super-peers, to
execute the query processing operators and how to route the processing results to the receiving thin-peer.
This can be done based on the following optimization techniques.

Data stream sharing reuses data streams already present in the network for answering newly regis-
tered continuous queries. Thereby, streams that have been computed for previously registered queries
can be shared to satisfy new queries. This is enabled by in-network query processing, which offers the
ability to execute query processing operators at any super-peer in the network, and multi-subscription op-
timization, which aims at identifying reusable data streams that can be shared to answer multiple queries.
Considering the example depicted in Figure 1, the query processing operators for Query 1 are executed
close to the data source at SP4, e. g., to exploit early filtering. The result data stream of Query 1 is routed
to P1 via SP5 and SP1. It can be shared at SP5 for satisfying Query 2, assuming that the result for Query 2
is completely contained in the result for Query 1. Any additional processing for obtaining the final result
data stream of Query 2 is performed directly at SP5.

Since sharing a data stream is only possible if the stream contains all the necessary information for

2

answering a new subscription, optimization quality depends on the registration sequence of queries. If
queries selecting smaller parts of the data streams are registered first, their result data streams as produced
by in-network query processing are not reusable for satisfying later registered queries that require larger
parts of the streams. For example, registering Query 2 before Query 1 in the example network would
prevent the sharing of the result data stream of Query 1 as described above. To alleviate this problem,
data stream widening can be employed, e. g., by relaxing some selection predicate in the network. Thus,
an existing result data stream is widened to deliver not only the result data for the query it was originally
computed for, but also the data for the new query. Since, in its simplest form, relaxing a predicate in this
way can be done by disjunctively combining the predicates of the two queries, data stream widening can
introduce additional disjunctions in the predicates of selection operators in the network. To illustrate this,
suppose that Query 3 in Figure 1 is registered after Query 1 but needs some more data of Stream 0 than
Query 1. The processing operators at SP4 can then be relaxed to produce a result stream containing the
necessary information for both queries. This causes the selection predicate for producing the combined
stream to become the disjunction of the selection predicates of the two individual queries (Q1∨Q3). Note
that the additional disjunction can make future predicate matchings and evaluations more expensive.
Further processing at SP1 can then produce the final result data streams of Queries 1 and 3 and deliver
them directly to P1 and to P3 via SP3.

To be able to decide whether a certain data stream can be used to satisfy a newly registered query,
among other things, the selection predicates of the new query and the query that produced the data
stream considered for reuse have to be matched. The matching process consists of an implication check
and, if the selection predicate of the new query does not imply the selection predicate of the stream
producing query, a predicate relaxation that computes the relaxed predicate covering all the necessary
information for both queries. To speed up the predicate matching and evaluation processes, predicates
can be indexed using a multi-dimensional index structure. This corresponds to a change in perspective
similar to predicate indexing in, e. g., active databases and publish & subscribe systems [18, 19, 31, 32].
In traditional DBMSs, data is relatively static and queries are dynamic, i. e., different queries are posed
and answered using the already present data. Therefore, the data is indexed to support efficient answering
of certain query types. In a DSMS, the set of registered continuous queries is relatively static (apart from
registering new and deleting old queries) and the data arriving in the form of continuous, possibly infinite
data streams is higly dynamic. Thus, the queries—or, in the context of this paper, the query predicates—
are indexed for efficient predicate matching and evaluation.

In this paper, we describe and discuss various methods for matching and evaluating interval-based
disjunctive predicates. We propose heuristics as well as an exact solution for the predicate matching
problem and investigate the use of multi-dimensional indexing for speeding up the matching and evalu-
ation processes for disjunctive predicates. To the best of our knowledge, this is the first work to examine
the use of multi-dimensional indexes for matching and continuously evaluating disjunctive predicates.
We have implemented all presented algorithms and show the results of an extensive experimental study
that we have conducted for comparing and evaluating the various approaches. The study reveals that
performance gains of several orders of magnitude are achievable for predicate matching and evaluation
through our multi-dimensional indexing approach.

The paper is structured as follows. In Section 2, our notion of predicates in the context of this paper,
the problems of predicate matching and evaluation, and some notation are introduced. Section3 presents
some heuristics and an exact solution for the matching problem. A standard and an index-based approach
for the evaluation of disjunctive predicates are described in Section4. In Section 5 we analyze the space
and time complexities of the presented algorithms. Section6 contains a description of our experimental
studies and presents their results. Related work is discussed in Section7. Section 8 concludes the paper
and states some ideas for future work.

3

2 Preliminaries

Before we describe the algorithms for predicate matching and evaluation, we first introduce our restricted
notion of predicates in the context of this paper and define the problems of predicate matching and
evaluation.

2.1 Predicates

Predicates in our context are of the following three forms:

Atomic predicate: An atomic predicate is a comparison of the form v θ c, where v is a variable, c is a
constant, and θ ∈ {=, �=,<,≤,>,≥}.
Example: a≤ 5

Conjunctive predicate: A conjunctive predicate is a conjunction of atomic predicates.

Example: (a≤ 5)∧ (b≥ 7)

Disjunctive predicate: A disjunctive predicate is a disjunction of conjunctive predicates.

Example: ((a≤ 5)∧ (b≥ 7))∨ ((a≥ 0)∧ (b < 9))

We call the distinct variables referenced in a predicate the dimensions of the predicate. For example,
the disjunctive predicate shown above has two dimensions named a and b. Atomic predicates define
intervals in the various dimensions of a predicate by setting lower and upper bounds that can be included
in or excluded from the interval itself. For example, a ≥ 0 defines an included lower bound of 0 for
the interval in dimension a. In contrast, b < 9 defines an excluded upper bound of 9 for the interval in
dimension b. Intervals can also be unbounded on one or both ends, i. e., the lower bound of an interval
can be negative infinity and the upper bound can be positive infinity. Atomic predicates of the form
v = c can be replaced by (v ≤ c)∧ (v ≥ c) and atomic predicates of the form v �= c can be replaced by
(v < c)∨ (v > c). The disjunctively combined conjunctive predicates making up a disjunctive predicate
are called the (conjunctive) subpredicates of the respective disjunctive predicate.

Note that the above definition defines a predicate hierarchy, i. e., any atomic predicate can be seen as a
special case of a conjunctive predicate and any conjunctive predicate can in turn be seen as a special case
of a disjunctive predicate but not vice versa. Note also that any conjunctive and disjunctive combination
of atomic predicates can always be transformed into the form of a disjunctive predicate as defined above
by transforming it into disjunctive normal form (DNF) with the atomic predicates being treated as literals.

2.2 Predicate Matching

Predicate matching, in our context, is the problem of deciding whether a predicate implies another and,
if this is not the case, how the other predicate can be altered in order for the implication to be valid. More
formally, given two predicates p and p′, matching p′ with p returns (true, p), if p′ ⇒ p, and (false, p̄),
where p̄ is a relaxed version of p such that p′ ⇒ p̄ (and of course also p⇒ p̄), otherwise.

While the implication problem can be solved easily for conjunctive predicates [25, 27], it is proven
to be NP-hard for disjunctive predicates [27]. Since disjunctive predicates are inevitably created in the
course of data stream widening in a DSMS, matching such predicates is a necessity during the optimiza-
tion of stream processing in such a system.

In the following, we always consider the matching of the query predicate of a newly registered
query with the stream predicate of a stream producing query that is already being executed in a DSMS.
Nevertheless, the presented techniques are generic and can be applied to any predicates of the form
described in Section 2.1 and in any domain.

4

Variable Description

p disjunctive stream predicate
p′ disjunctive query predicate
c conjunctive subpredicate of stream predicate p
c′ conjunctive subpredicate of query predicate p′

d dimension of a conjunctive subpredicate c in p
d′ dimension of a conjunctive subpredicate c′ in p′

Id interval defined by c in dimension d
Id′ interval defined by c′ in dimension d′

D data space
|D| number of dimensions in the data space
|Dc| number of dimensions referenced by c

Table 1: Variables used in algorithm descriptions

2.3 Predicate Evaluation

Predicate evaluation, in our context, is the problem of deciding whether a data item satisfies a predicate
or not. More formally, given a predicate p and a data item i, evaluating p against i returns true, if, for all
dimensions referenced in p, the value of i in the corresponding dimension lies within the interval defined
for that dimension in p.

2.4 Notation

Before starting with the algorithm descriptions, we introduce some notation. In the pseudocode repre-
sentations of the predicate matching and evaluation algorithms in AppendixA on page 43, assignments
of the value of a variable y to a variable x are written x← y. Assignments are supposed to assign a copy
of the value of y to x. Furthermore, function calls are supposed to use call-by-value. Unless explicitly
stated, queues used in the algorithm descriptions can be either FIFO or LIFO queues. Important vari-
ables used during algorithm description are shown in Table1. Note that the variable d, which denotes a
dimension in the data space in the algorithm descriptions, is sometimes also used to denote |D|, i. e., the
number of dimensions in the data space. In each case, the meaning of d will be clear from the context.

3 Predicate Matching

In the following, three algorithms for matching disjunctive predicates are presented. The first two are
heuristics that are very efficient, yet do not deliver exact results. The last one is an exact method whose
worst case running time is exponential in the number of subpredicates contained in the predicates to be
matched.

3.1 Example

Consider predicates p1 and p2 defined below as examples and suppose we want to match p2 with p1, i. e.,
determine whether p2 implies p1 or how p1 could be modified in order for the implication to be valid.

p1: ((a≥ 3)∧ (a≤ 12)∧ (b≥ 0)∧ (b≤ 5))∨
((a≥ 9)∧ (a≤ 14)∧ (b≥ 2)∧ (b≤ 8))∨
((a≥ 0)∧ (a≤ 5)∧ (b≥ 1)∧ (b≤ 6))

5

0

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14

b

a

p1

p2

Figure 2: Graphical representation of predicates p1 (solid boxes) and p2 (dashed box)

p2: ((a≥ 1)∧ (a≤ 8)∧ (b≥ 2)∧ (b≤ 4))

Note that p1 is a disjunction of conjunctive predicates and that, for simplicity and a shorter presentation,
p2 consists of only one conjunctive subpredicate and does not contain any disjunctions. However, our
algorithms are of course capable of handling the general case of more than one subpredicate in p2. A
graphical representation of predicates p1 and p2 is shown in Figure 2.

3.2 Quick Check

Before the actual predicate matching algorithms, we first introduce a simple quick check (QC) algorithm
that can be combined with each of the matching algorithms. It is described in Algorithm 1 and tests
for a conjunctive subpredicate c′, whether it implies at least one of the conjunctive subpredicates c of
a given stream predicate p. The implication check for conjunctive predicates can easily be done by
checking the bounds of c′ for containment in the intervals defined by the atomic predicates in c for all
dimensions [25, 27]. If the quick check returns true, nothing more remains to be done for the tested
subpredicate because it is clear that it already matches the stream predicate as is.

Concerning our running example, comparing the only conjunctive subpredicate of p2 to each con-
junctive subpredicate of p1 obviously yields no match, i. e., the quick check returns false. This is due to
the fact that none of the tested implications is valid which can easily be seen from Figure2. The dashed
box of p2 is not completely contained in any one of the three solid boxes of p1.

Since the algorithm has to iterate once over all conjunctive subpredicates of p and, for each subpred-
icate, over all dimensions referenced in that subpredicate, the worst case complexity of this algorithm is
in O(n ·d), where n is the number of conjunctive subpredicates c in p and d is the number of dimensions
in the data space. Algorithm 6 on page 43 contains a pseudocode representation of the quick check.

3.3 Heuristics with Simple Relaxation

The easiest way to perform predicate matching is to completely skip the predicate implication checking
and go directly to the relaxation part. This is the idea of the heuristics with simple relaxation (HSR)
shown in Algorithm 2. When matching a predicate p′ with a predicate p, all conjunctive subpredicates
of p′ are disjunctively added to p. Since this solution does not perform any implication checking at all,
it will miss matches already present in the original predicates and perform unnecessary relaxations in
general.

6

Algorithm 1 Quick Check (QC)
Input: Stream predicate p and a conjunctive subpredicate c′ of query predicate p′.
Output: true, if c′ ⇒ c for at least one conjunctive subpredicate c in p; false, otherwise.

1. Compare subpredicates. Compare c′ to each conjunctive subpredicate c in p, i. e., check if c′ ⇒ c.

2. Return result. As soon as, for the current values of c′ and c, c′ ⇒ c, return true. If no conjunctive
subpredicate c in p with c′ ⇒ c exists, return false.

The situation can be improved by combining the approach with the quick check algorithm of Sec-
tion 3.2. The matching problem for disjunctive predicates is thereby basically reduced to the implica-
tion problem for conjunctive predicates. In this solution, two nested loops compare each conjunctive
subpredicate of the query predicate to each conjunctive subpredicate of the stream predicate, check-
ing for implication. If, for each subpredicate of the query predicate, a matching subpredicate in the
stream predicate is found, the matching succeeds, else it fails. Obviously, this approach might fail
even though the query and the stream predicates do match. In the running example, the only sub-
predicate ((a ≥ 1) ∧ (a ≤ 8) ∧ (b ≥ 2) ∧ (b ≤ 4)) of predicate p2 does not match any of the three
subpredicates ((a ≥ 3)∧ (a ≤ 12)∧ (b ≥ 0)∧ (b ≤ 5)), ((a ≥ 9)∧ (a ≤ 14)∧ (b ≥ 2)∧ (b ≤ 8)), or
((a≥ 0)∧ (a≤ 5)∧ (b≥ 1)∧ (b≤ 6)) of predicate p1 directly. However, it matches the whole predicate
p1, as can be seen from Figure 2, which this algorithm would not realize. Therefore, a mismatch would
be reported although the predicates actually do match.

Predicate relaxation in the case of a mismatch is simply done by adding the concerned query sub-
predicate to the stream predicate using a disjunction. This yields ((a ≥ 3)∧ (a ≤ 12)∧ (b ≥ 0)∧ (b ≤
5))∨ ((a≥ 9)∧ (a≤ 14)∧ (b≥ 2)∧ (b≤ 8))∨ ((a≥ 0)∧ (a≤ 5)∧ (b≥ 1)∧ (b≤ 6))∨ ((a≥ 1)∧ (a≤
8)∧ (b≥ 2)∧ (b≤ 4)) for p1 in our example and clearly causes the number of disjunctions in the stream
predicate to increase by one. In general, even more than one disjunction might be added—one for each
conjunctive subpredicate of the query predicate in the worst case. Note that, if one or more subpredi-
cates of the query predicate already matched the stream predicate before the relaxation and the algorithm
just was not able to detect these matches, this strategy still adds unnecessary disjunctions to the stream
predicate. This should be avoided since additional disjunctions can cause future predicate matchings and
evaluations to become more expensive as the number of subpredicates has direct impact on algorithm
complexities.

The worst case complexity of Algorithm 2 is in O(m) without quick check and in O((m ·n+m2) ·d)
with quick check, where m is the number of conjunctive subpredicates c′ in p′, n is the number of
conjunctive subpredicates c in p, and d is the number of dimensions in the data space.

The advantages of the HSR algorithm without as well as with quick check are that it is fast and easy to
implement. The disadvantages of the approach obviously are that it generally misses matches—actually
all matches if it is used without the quick check—and that it can therefore cause unnecessary predi-
cate relaxations which affects the performance of future predicate matching and evaluation processes.
Algorithm 7 on page 43 shows a pseudocode representation of the HSR approach.

3.4 Heuristics with Complex Relaxation

The heuristics with complex relaxation (HCR) avoids the increase in the number of subpredicates in
the stream predicate induced by HSR at the expense of potentially producing only approximate results.
The approach is shown in Algorithm 3. For each conjunctive subpredicate in the query predicate, HCR
relaxes one of the conjunctive subpredicates in the stream predicate in order for it to match the query
subpredicate if no direct match between subpredicates has been found. Relaxing a subpredicate means

7

Algorithm 2 Heuristics with Simple Relaxation (HSR)
Input: Stream predicate p and query predicate p′.
Output: (true, p), if the quick check of Algorithm 1 is activated and, for all conjunctive subpredicates

c′ in p′, c′ ⇒ c for at least one conjunctive subpredicate c in p; (false, p̄), where p̄ is a relaxed version
of p such that the above condition is satisfied, otherwise.

1. Relax predicate. Disjunctively add each conjunctive subpredicate c′ in p′ to p. Optionally, per-
form the quick check of Algorithm 1 for p and each c′ in p′ and only append those conjunctive
subpredicates c′ in p′ to p for which the quick check returns false.

2. Return result. Return (true, p), if no changes have been made to p, i. e., no conjunctive subpred-
icates c′ of p′ have been disjunctively added to p. Otherwise, return (false, p̄), where p̄ is the
modified version of p after the addition of one or more conjunctive subpredicates c′ of p′.

0

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14

b

a

p1

p2

Figure 3: Relaxation of predicate p1 (solid boxes) to match predicate p2 (dashed box)

employing a less restrictive filter on the corresponding data stream, therefore increasing network traffic.
Thus, the subpredicate of the stream predicate which needs the least amount of relaxation in order to
match the query subpredicate should be relaxed. In our running example, this would be ((a≥ 3)∧ (a ≤
12)∧ (b ≥ 0)∧ (b ≤ 5)) which becomes ((a ≥ 1)∧ (a ≤ 12)∧ (b ≥ 0)∧ (b ≤ 5)). The situation is
illustrated in Figure 3. In general, this kind of relaxation causes the data stream to contain unnecessary
data, e. g., the data with ((a≥ 1)∧ (a < 3)∧ (b≥ 0)∧ (b < 2))∨ ((a≥ 1)∧ (a < 3)∧ (b > 4)∧ (b≤ 5))
in our example. However, in the example, parts of these areas are already covered by another conjunctive
subpredicate of p1 as can be seen from Figure 3. Therefore, additional unnecessary network traffic is
only caused by the inclusion of the hatched area ((a ≥ 1)∧ (a < 3)∧ (b ≥ 0)∧ (b < 1)) in Figure3 in
this specific case.

Deciding which subpredicate should be chosen for relaxation is a complex issue. As the example
indicates, minimizing the extensions that have to be made to the intervals covered by the subpredicate in
the various dimensions of the data space is generally not enough in order to maximize the quality of the
solution. This is because unnecessary data added by the relaxation of the subpredicate might or might not
already be covered by other subpredicates and therefore might or might not cause additional unnecessary
network traffic, i. e., lead to an approximation of the correct result. The decision whether or not the
unnecessary parts of the intervals added to the relaxed subpredicate are covered by other subpredicates
leads to the same kind of matching problem that we initially intended to solve—without the relaxation

8

Algorithm 3 Heuristics with Complex Relaxation (HCR)
Input: Stream predicate p and query predicate p′.
Output: (true, p), if, for all conjunctive subpredicates c′ in p′, c′ ⇒ c for at least one conjunctive sub-

predicate c in p; (false, p̄), where p̄ is a relaxed version of p such that the above condition is satisfied,
otherwise.

1. Compare subpredicates. Compare each conjunctive subpredicate c′ in p′ to each conjunctive sub-
predicate c in p in step 2. Optionally, perform the quick check of Algorithm1 for p and c′ and only
consider c′ in the following if the quick check returns false.

2. Compare dimensions. Compare each dimension d of c to the corresponding dimension d′ of c′,
i. e., in the following, d = d′ holds. For each pair of corresponding dimensions d and d′, if the
interval Id′

c′ of c′ in d′ is not completely contained in the interval Idc of c in d, compute the amount
p by which Id

c has to be extended, i. e., the sum of the amounts by which its lower bound has to
be decreased and its upper bound has to be increased in order for the containment to be valid.
Multiply p with the product of the non-zero extents of all finite intervals in all other dimensions
of c and add up the results for all dimensions, yielding an accumulated value e. Replace Idc in c
with its extended version. If, after the comparison of all dimensions, the relaxed version of c has
less unbounded interval ends than the current best solution (the initial best solution has an infinite
number of unbounded interval ends) or the same number of unbounded interval ends and a smaller
value for e (again, the initial value for e is infinite), it is saved as the new current best solution. If,
after the comparison of c′ with all c in p, no match for c′ without relaxation has been found, replace
the original version of the current best solution in p with the relaxed version computed above.

3. Return result. Return (true, p), if no changes have been made to p, i. e., no conjunctive subpredi-
cates c of p have been replaced with relaxed versions. Otherwise, return (false, p̄), where p̄ is the
modified version of p after the relaxation of one or more conjunctive subpredicates c in p.

aspect of course. We use heuristics to solve this problem and choose the subpredicate with the lowest
number of infinite interval bounds for relaxation. If the number of infinite interval bounds is equal for
two subpredicates, we choose the subpredicate that yields the lowest increase in the volume of the data
space it covers, ignoring dimensions with infinite interval length.

Figure 4 illustrates a case where relaxation is actually necessary. In this example, the third subpred-
icate of predicate p1 has been altered from ((a ≥ 0)∧ (a ≤ 5)∧ (b ≥ 1)∧ (b ≤ 6)) to ((a ≥ 0)∧ (a ≤
5)∧ (b ≥ 3)∧ (b ≤ 6)) to form predicate p′1. This leads to the necessary inclusion of the hatched area
described by ((a≥ 1)∧(a < 3)∧(b≥ 2)∧(b < 3)) in Figure4 whereas the other hatched area described
by ((a≥ 1)∧ (a < 3)∧ (b≥ 0)∧ (b < 2)) is unnecessarily included additionally.

HCR, like HSR, can be combined with the quick check algorithm of Section 3.2 to detect obvi-
ous matches before starting the more complex relaxation algorithm. The worst case complexity of the
algorithm is in O(m ·n ·d2) with and without quick check, with m, n, and d as defined before.

The advantages of HCR are similar to those of HSR, i. e., the approach is relatively fast and easy to
implement. Furthermore, it does not introduce any additional disjunctions in the stream predicate. The
disadvantages are also similar since the approach still misses matches and therefore performs unneces-
sary predicate relaxations in general. Additionally, HCR, in contrast to HSR, can lead to the inclusion
of unneeded parts of the data space in the relaxed predicate and therefore cause unnecessary network
traffic through false drops. This necessitates additional filtering to obtain the exact result if approximate
results are not acceptable. Algorithm 8 on page 45 shows a detailed pseudocode representation of the
HCR algorithm.

9

0

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14

b

a

p2

p1

Figure 4: Partial match of predicates p′1 (solid boxes) and p2 (dashed box)

3.5 Exact Matching

The exact matching (EM) algorithm is a split algorithm that always correctly detects a match of a query
predicate p′ with a stream predicate p. It does not miss matches like the heuristics above nor does it
report false matches. The query predicate is split along its dimensions according to the boundaries of the
overlapping intervals of the stream predicate. Only if, at the end of the matching process, all parts of the
query predicate have been successfully matched, a match is reported. Otherwise, the stream predicate is
relaxed. The approach is described in detail in Algorithm4.

Concerning the two dimensions a and b of our running example, we first match the intervals [3,12] for
a and [0,5] for b of the first subpredicate ((a≥ 3)∧ (a≤ 12)∧ (b≥ 0)∧ (b≤ 5)) of p1 with the intervals
[1,8] for a and [2,4] for b corresponding to ((a ≥ 1)∧ (a ≤ 8)∧ (b ≥ 2)∧ (b ≤ 4)) of p2. Since the
interval for b of p2 is completely contained in the interval for b of p1, we do not have to split the interval
for b of p2. We simply keep this interval and only split the interval for a of p2 into the two intervals [1,3[
and [3,8]. The second of these two intervals is covered by the first subpredicate of p1 and therefore does
not have to be considered any further. Thus, in the following, we only need to match the intervals [1,3[
for a and [2,4] for b of p2. This corresponds to a rest predicate of ((a≥ 1)∧(a < 3)∧(b≥ 2)∧(b≤ 4)).
Matching this with intervals [9,14] and [2,8] of the second subpredicate ((a ≥ 9)∧ (a ≤ 14)∧ (b ≥
2)∧ (b ≤ 8)) of p1 does not yield any additional matches. So we continue with the third and final
subpredicate ((a ≥ 0)∧ (a ≤ 5)∧ (b ≥ 1)∧ (b ≤ 6)) of p1, which yields intervals [0,5] for a and [1,6]
for b. These intervals completely contain the intervals for a and b of the rest predicate of p2. Thus, the
resulting rest predicate of p2 is empty and the whole predicate has been matched. This yields the fact
that p1 is implied by p2.

The above example illustrates the case of a complete match between predicates. In case of a mis-
match, the resulting rest predicate will not be empty. In order to appropriately relax the query predicate,
either the rest predicate or the original query predicate has to be disjunctively added to the stream predi-
cate. While the former solution does not cause any additional overlap in the stream predicate, the latter
always introduces only one additional subpredicate. Overlap is not that critical for predicate matching
and evaluation as indicated by our performance tests in Section6 and due to our short-circuit optimization
introduced in Section 4.2. In contrast, the number of subpredicates has direct impact on the efficiency of
matching and evaluation algorithms and should therefore be kept small. Consequently, we choose to add
the original query predicate in case of a mismatch. Note that, in each case, no unnecessary parts of the
data space are added to the predicate during relaxation, as opposed to the HCR algorithm.

10

Algorithm 4 Exact Matching (EM)
Input: Stream predicate p and query predicate p′.
Output: (true, p), if p′ ⇒ p; (false, p̄), where p̄ is a relaxed version of p such that p′ ⇒ p̄, otherwise.

1. Compare subpredicates. Compare each conjunctive subpredicate c′ in p′ to each conjunctive sub-
predicate c in p in step 2. Optionally, perform the quick check of Algorithm1 for p and c′ and only
consider c′ in the following if the quick check returns false.

2. Compare dimensions. Compare each dimension d of c to the corresponding dimension d′ of c′,
i. e., in the following, d = d′ holds. Let Id

c and Id′
c′ be the intervals defined by c and c′ in dimensions

d and d′, respectively. We distinguish four cases:

(a) If Id
c and Id′

c′ are disjoint, continue with the next conjunctive subpredicate c in p to be matched
with c′.

(b) If Id′
c′ is completely contained in Id

c , continue with the next pair of dimensions from c and c′.

(c) If Id
c is completely contained in Id′

c′ , split c′ along dimension d′ into the part c′i that is over-
lapping with c in dimension d′ and the remaining parts c′o1 and c′o2. Enqueue c′o1 and c′o2 in a
queue Q′c.

(d) If Id
c and Id′

c′ overlap, split c′ along dimension d′ into the part c′i that is overlapping with c in
dimension d′ and the remaining part c′o. Enqueue c′o in a queue Q′c.

Match the remaining parts of c′ contained in Q′c with the remaining conjunctive subpredicates c in
p as above. As soon as Q′c does not contain any more unmatched parts of c′, continue with the next
c′ in p′ from the beginning. If not all parts of c′ could be matched, disjunctively add c′ to p.

3. Return result. Return (true, p), if no changes have been made to p, i. e., no conjunctive subpred-
icates c′ of p′ have been disjunctively added to p. Otherwise, return (false, p̄), where p̄ is the
modified version of p after the addition of one or more conjunctive subpredicates c′ of p′.

To demonstrate the case of a partial match, we introduce predicate p3.

p3: ((a≥ 4)∧ (a≤ 13)∧ (b≥ 7)∧ (b≤ 10))

We now want to match p3 with p1. The situation is illustrated in Figure 5. Considering the intervals
[4,13] for a and [7,10] for b of p3, we want to match these with intervals [3,12] for a and [0,5] for b of
the first subpredicate ((a ≥ 3)∧ (a ≤ 12)∧ (b ≥ 0)∧ (b ≤ 5)) of p1. Since the intervals for b of both
predicates are disjoint, no match is found. We therefore continue by matching the intervals of p3 with
intervals [9,14] for a and [2,8] for b of the second subpredicate of p1. Since the intervals for a of both
predicates overlap, we have to split the interval for a of p3 into the two intervals [4,9[and [9,13]. As
the first interval does not overlap with the currently examined subpredicate of p1, this part of p3 is saved
for future comparisons with other subpredicates of p1. The second interval completely overlaps with the
current subpredicate of p1 and is therefore compared with this subpredicate in the remaining dimensions.
Since there is also an overlap of the intervals for b, another split is made. The resulting intervals for b
are [7,8] and]8,10]. After the decomposition, p3 looks as follows:

((a≥ 4)∧ (a < 9)∧ (b≥ 7)∧ (b≤ 10))∨
((a≥ 9)∧ (a≤ 13)∧ (b > 8)∧ (b≤ 10))∨
((a≥ 9)∧ (a≤ 13)∧ (b≥ 7)∧ (b≤ 8))

The three disjoint parts of this predicate are indicated by the dotted lines within the rectangle of p3
in Figure 5. The third of the three disjoint subpredicates of the decomposed predicate p3 above has

11

0

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14

b

a

10

p1

p3

Figure 5: Partial match of predicates p1 (solid boxes) and p3 (dashed box)

now been completely matched with the second subpredicate of p1. The other two subpredicates of the
decomposed predicate p3 have to be matched with the remaining subpredicates of p1. This yields no
further matches. Therefore, p3 does not match p1. In order to force the match, p1 has to be relaxed by
disjunctively adding the whole subpredicate of p3, which in our example happens to be p3 itself. The
relaxed predicate looks as follows:

((a≥ 3)∧ (a≤ 12)∧ (b≥ 0)∧ (b≤ 5))∨
((a≥ 9)∧ (a≤ 14)∧ (b≥ 2)∧ (b≤ 8))∨
((a≥ 0)∧ (a≤ 5)∧ (b≥ 1)∧ (b≤ 6))∨
((a≥ 4)∧ (a≤ 13)∧ (b≥ 7)∧ (b≤ 10))

Another example for a partial match is shown in Figure4. In this case, the EM algorithm would split
predicate p2 into the three disjoint parts (a ≥ 3)∧ (a ≤ 8)∧ (b ≥ 2)∧ (b ≤ 4), (a ≥ 1)∧ (a < 3)∧ (b ≥
3)∧(b≤ 4), and (a≥ 1)∧(a < 3)∧(b≥ 2)∧(b < 3). The third of these three parts remains unmatched.

The EM algorithm needs to compare the intervals defined by stream subpredicates in the various
dimensions of the data space to the intervals defined by query subpredicates in the corresponding di-
mensions. This dimension comparison distinguishes four cases which are illustrated in Figure6. The
intervals defined by the stream and the query subpredicate may either be disjoint (Figure6(a)), overlap-
ping (Figure 6(d)), or contained in one another (Figures 6(b) and 6(c)). The dimension comparison is
shown in detail in Algorithm 9 on page 46.

We have developed three split strategies for use with the EM algorithm which differ in the order in
which they process unmatched parts of previously split subpredicates. These differences have impact
on the average execution time—though not on the theoretical time complexity—and on the space com-
plexity of the EM algorithm. We call the (unmatched) parts resulting from the splitting of a conjunctive
subpredicate the (unmatched) subparts of the subpredicate and the original subpredicate itself the corre-
sponding superpart of these subparts. Note that each subpart and each superpart by itself constitutes a
conjunctive subpredicate. A schematic illustration of the splitting strategies for a small example with a
query subpredicate c′, n = 3 stream subpredicates, and d = 2 dimensions in the data space is shown in
Figure 7. The figure assumes the worst case of the query subpredicate and each of its resulting subparts
in turn being split into 2d unmatched parts in the course of the matching. Note that this is a conservative
approximation since, in reality, it is not possible that each of the subparts originating from the same su-
perpart is split into 2d unmatched parts. This is due to the fact that all the subparts of the same superpart

12

c c'

d = d'

(a) Disjoint stream and query intervals

c'

c

d = d'

(b) Query interval contained in stream interval

c

c'

d = d'

c'o1 c'i c'o2

(c) Stream interval contained in query interval

c

c'

d = d'

c'i c'o

(d) Overlapping stream and query intervals

Figure 6: Cases distinguished during dimension comparison

are pairwise disjoint and 2d unmatched parts only result from the splitting if the stream subpredicate is
completely contained in the query subpredicate to be split. However, a stream subpredicate cannot be
completely contained in more than one of a set of disjoint subparts. Nevertheless, we use this approxi-
mation for the EM algorithm, yielding exponential worst case time complexity. Note that due to the fact
that the general implication problem involving disjunctive predicates is proven to be NP-hard [27], the
actual worst case time complexity, although lower than our approximation, will still be exponential.

Breadth-First Split Strategy (BFS)

The breadth-first split strategy (BFS) starts by splitting a query subpredicate c′ by comparing it to the
first stream subpredicate c of a stream predicate p. The remaining unmatched parts of c′ are then split in
turn by comparing them to the next stream subpredicate in p until no more unmatched parts remain, in
which case the matching succeeds, or no more stream subpredicates remain, in which case the matching
fails and the stream predicate needs to be relaxed. The resulting tree of unmatched parts for the worst
case is shown in Figure 7(a). The tree has a maximum of n+ 1 levels, one for each stream subpredicate
and one for the root, which is the original query subpredicate c′. On each level, every subpart on that
level is split into 2d new subparts that belong to the next level of the tree. Thus, the leaf level contains
a total of (2d)n subparts. The EM algorithm with BFS strategy is shown in detail in Algorithm 10 on
page 47.

Using the BFS strategy leads to building up the aforementioned tree in a breadth-first manner, i. e.,
each level of the tree is completely filled with all subparts belonging to that level before the next level
is built. This leads to a maximum in computational cost and memory usage, since every possible split is
performed and the maximum possible number of subparts is created and needs to be stored.

13

(a) Breadth-first split strategy (BFS)

(b) Depth-first split strategy (DFS)

(c) Mixed split strategy (MIX)

Figure 7: Exact matching algorithm split strategies

Depth-First Split Strategy (DFS)

The situation can be vastly improved by using the depth-first split strategy (DFS), which is illustrated
in Figure 7(b). Using this strategy, only one of the subparts on each level of the tree is split further by
comparing it to the next stream subpredicate. If all parts on one level of the tree have been matched, the
matching continues with the next subpart on the parent level of the tree. In the worst case, each level
of the tree contains 2d parts. Thus, the tree has a total of (n− 1) · (2d − 1)+ 2d leave nodes. The EM
algorithm with DFS strategy is shown in detail in Algorithm 11 on page 48.

Using the DFS strategy leads to building up the aforementioned tree in a depth-first manner. Since
matched parts are removed from the tree, each level contains at most 2d parts at each time, except for
the root level which always contains at most one part—the original query subpredicate c′. This leads to a
reduction of the space complexity to quadratic in d and to linear in all other variables. Further, it reduces
the average execution time of the algorithm since mismatches can be detected early and therefore—
compared to the BFS strategy—many comparisons between subparts and stream subpredicates can be
saved. On the other hand, the strategy is a little more difficult to implement and cannot be supported as
well by a multi-dimensional index structure (see Section3.6) as the BFS strategy. This is due to the fact
that the index maintenance overhead is much larger since, on each level of the tree, the algorithm must
keep track of the stream subpredicates that have not yet been used for matching. This can be done by

14

storing a copy of the index for each tree level with the stream subpredicates that have already been used
for matching removed. Alternatively, using only one single index, subpredicates can be deleted from and
reinserted into the stream predicate index as needed in the course of the algorithm. A subpredicate is
deleted from the index when descending one level in the tree and reinserted when going back up to the
parent level. A more sophisticated solution could be achieved by developing an index structure that al-
lows marking index entries as active or inactive during runtime without causing any index reorganization.
This would avoid the need for copying the index or deleting and reinserting index entries.

Mixed Split Strategy (MIX)

The mixed split strategy (MIX) is a compromise between the BFS and DFS strategies. While its memory
consumption is higher than that of the DFS strategy and it might perform some unnecessary splits before
detecting a mismatch, it still needs much less memory than the BFS strategy and can be implemented
with less data structure maintenance overhead than the DFS strategy. The idea is to always compare all
the subparts that belong to the same superpart against the next stream subpredicate at once, splitting them
as needed. The approach is illustrated in Figure 7(c). Using this strategy, the tree of subparts has one
node in level 0, 2d nodes in level 1, and (2d)2 nodes in all remaining levels in the worst case. Therefore,
the number of leave nodes is (n− 2) · (2d− 1) · 2d + (2d)2 in the worst case. The EM algorithm with
MIX strategy is shown in detail in Algorithm 12 on page 49.

The MIX strategy detects mismatches potentially later than the DFS strategy but still earlier than
the BFS strategy. It furthermore has cubic space complexity in d, whereas the DFS and BFS strategies
have quadratic and exponential space complexities in d, respectively. This will be detailed in the space
complexity analyis in Section 5. The MIX strategy is supposed to be slower than the DFS strategy for
large numbers of stream subpredicates n and dimensions d if many mismatches occur, since the DFS
strategy then benefits from detecting mismatches earlier. If only few mismatches occur, however, the
reduction in maintenance overhead achieved in the MIX strategy might cause it to outperform the DFS
strategy. Like the DFS strategy, the MIX strategy is a little more difficult to implement than the BFS
strategy and cannot be supported as well by a multi-dimensional index structure as the BFS variant since
the index maintenance overhead is much higher. However, all three variants are comparatively easy to
implement and the early detection of mismatches in the DFS and MIX strategies usually outweighs the
lack of efficient index support. Performance could however still be improved by developing a specialized
index structure that can be efficiently employed in the context of predicate matching as it is described
here.

Again, the quick check presented in Section 3.2 can be executed in combination with the EM ap-
proach to check for matching subpredicates in advance before starting the more complex relaxation
algorithm. The worst case time complexity of the EM algorithm is in O(∑m−1

i=0 ∑n+i−1
j=0 (2d) j · d) without

quick check and therefore in O(d · (2d)m+n), with m, n, and d as defined in Section 3.3. We will present
all details on the complexity analysis in Section5.

The advantages of the exact solution are that it determines matches between predicates in an exact
way, i e., all existing matches are found—as opposed to the heuristics—and no false matches are reported.
Therefore, the approach does not cause any unnecessary predicate relaxations. Also, the non-matching
parts of the query predicate are exactly identified. The major disadvantage of the exact solution is its
high algorithmic complexity, which is exponential in the number of subpredicates in the predicates to
be matched. This might slow down the optimization process considerably for predicates with many
disjunctions and makes the algorithm inapplicable for larger problem sizes. In such cases, the heuristics
have to be used.

15

3.6 Multi-Dimensional Indexing

The previously described algorithms can be supported by multi-dimensional indexing as follows. The
quick check of Algorithm 1 can use such an index to retrieve all conjunctive subpredicates of the stream
predicate p that overlap with the current conjunctive subpredicate c′ of the query predicate p′. Only the
overlapping subpredicates instead of all subpredicates of the stream predicate have to be iterated and
compared to c′ in the course of the algorithm.

Algorithm 2 without quick check offers no possibility for indexing. Algorithm3 cannot be supported
directly by an index either. It must always take all subpredicates of the stream predicate into consideration
for relaxation since it is not clear—and cannot be decided using a multi-dimensional index—which of
these subpredicates should be relaxed to minimize the cost. However, as with all matching algorithms
presented in this paper, the quick check that can be combined with these algorithms can use an index.

The exact solution of Algorithm 4 can benefit the most from a multi-dimensional index. In addition
to the indexed quick check, the index can also be used during the splitting step to quickly identify the
subpredicates of the stream predicate that overlap with the current subpredicate of the query predicate.
Only these overlapping subpredicates have to be considered during splitting instead of iterating over all
subpredicates of the stream predicate. However, depending on the index used, index maintenance may
outweigh its benefits for the exact matching algorithm when using the depth-first or mixed split strategy.

Various multi-dimensional index structures with different characteristics have been developed over
the years [15]. In this paper, we use different variants of the R-tree [3, 17]. Since R-trees index boxes
in multi-dimensional space, they can naturally index the multi-dimensional intervals described by our
predicates without any additional post-processing. Arbitrary intervals that form polygons rather than
rectangular boxes in the data space are not dealt with in this paper but could be approximated by mini-
mum bounding boxes in an R-tree. This may necessitate a non-trivial post-processing step in addition to
an index access. Note that the index does not need to comprise all dimensions of the data space. It only
needs to contain the dimensions that are actually referenced by the indexed predicate. These are usually
few, compared to the potentially many dimensions of the data space. If the dimensions referenced by
predicates can change dynamically, e. g., due to predicate relaxation as in our DSMS scenario, a subset
of the dimensions of the data space containing the most selective dimensions can be indexed. This yields
a quick and efficient reduction of the data volume. If a predicate references non-indexed dimensions,
these can be evaluated conventionally. Alternatively, the index can be rebuilt each time new dimensions
are introduced.

4 Predicate Evaluation

Apart from predicate matching, efficient predicate evaluation is also important in a DSMS. The goal is
to evaluate a given predicate against as many data items per time unit as possible, i. e., achieve a high
throughput. In the following, two approaches for predicate evaluation are presented.

4.1 Standard Evaluation

We use the term standard evaluation (SE) to denote a simple sequential scan that is shown in Algorithm5.
It evaluates a given predicate p against a given data item i by iterating over the conjunctive subpredicates
c of p and testing for each dimension, whether the value of i in that dimension lies within the interval
defined for the same dimension in c. As soon as a subpredicate containing the data item, i. e., containing
the values of i in each dimension, is found, the algorithm terminates and returns true. Only if, after
inspecting all conjunctive subpredicates c of p, no subpredicate containing i could be found, it returns
false.

16

Algorithm 5 Standard Evaluation (SE)
Input: Predicate p and data item i.
Output: true, if i satisfies p; false, otherwise.

1. Iterate subpredicates. Compare i to each conjunctive subpredicate c in p. For each such subpredi-
cate, compare each dimension dc in c to the corresponding dimension di in i in step 2.

2. Compare dimensions. For each pair of corresponding dimensions dc and di, i. e., dc = di, check
if the value for di in i lies within the interval defined for dc in c. If so, continue with the next
dimension in c. Otherwise, continue with the next conjunctive subpredicate c in p.

3. Return result. As soon as, for a certain conjunctive subpredicate c in p, the intervals of all dimen-
sions dc in c contain the values of all the corresponding dimensions di in i, return true. If there is
no conjunctive subpredicate c in p such that the above condition is satisfied, return false.

The worst case complexity of the standard evaluation algorithm is in O(n · d), where n denotes the
number of conjunctive subpredicates in the predicate p to be evaluated and d is the number of dimensions
in the data space. Algorithm 13 on page 50 shows a pseudocode representation of the standard evaluation
algorithm.

4.2 Index-based Evaluation

Considering the facts that the exact matching algorithm is only applicable for small problem sizes and
the approximate results of the HCR algorithm are often not desirable, a switch to the HSR algorithm
for larger problem sizes, i. e., larger numbers of dimensions and subpredicates, seems necessary in many
cases. Since this algorithm—with as well as without quick check—can introduce a considerable number
of additional disjunctions in predicates, the standard evaluation algorithm above will quickly become
inefficient. Therefore, an optimized predicate evaluation strategy that better handles large numbers of
subpredicates is needed.

Predicate evaluation can benefit even more from multi-dimensional indexing than the predicate
matching algorithms of Section 3. We call the evaluation algorithm with index support index-based
evaluation (IE). It differs from standard evaluation in that it does not iterate over the conjunctive sub-
predicates of the predicate to be evaluated. Instead, it uses a multi-dimensional index on the predicate,
i. e., the predicate is represented by a multi-dimensional index structure. To evaluate the predicate against
a data item, the algorithm simply executes the containment method of the index with the data item as its
only parameter. The evaluation is then performed completely by the index, returning true if the predicate
covers the data item and false otherwise. If a predicate references a very large number of dimensions, it
is possible to index only a subset, i. e., the most selective of these dimensions to obtain a quick index-
based prefiltering with only a small number of false drops in the result. The remaining dimensions can
then be evaluated traditionally using standard evaluation. Furthermore, predicate evaluation can be dy-
namically adapted to available computing resources by limiting the index level to which the evaluation
descends before deciding whether a data item satisfies the indexed predicate. This will in general lead to
approximate results, i. e., the resulting data stream will contain data items that do not satisfy the original
predicate. In a DSMS scenario, this can be corrected by an additional filtering step at another peer in
the network. Note that this approach does not remove any qualifying data items from the stream. In the
remainder of the paper, we always assume that all dimensions referenced in a predicate are indexed if
using an index and that the index-based evaluation is exact, i. e., does not use the dynamic adaptation
described above.

17

0

0

2

4

6

8

2 4 6 8 10 12 14 16 18

b

a

c1

10

12

14

16

18

c11 c21

c2

c12 c13 c22 c23

c11

c12

c13

c1

c2

c21

c22

c23

●

●

●

●

hit
i2

hit
i1

late
imiss

early
imiss

Figure 8: Index-based predicate evaluation

It has been noted several times in the literature that multi-dimensional index structures are not suitable
for predicate indexing in active databases and publish&subscribe systems [19] because overlap between
regions tends to be high and multi-dimensional index structures are prone to deteriorate under such
circumstances. Searching the regions containing a certain multi-dimensional point in an R-tree with
higly overlapping regions could, for example, lead to a full tree traversal in the worst case. However,
this is only true if all containing regions for a data item have to be returned as in traditional use cases.
Here, we index disjunctive predicates and the first hit determines the result, i. e., it suffices to determine
whether there is at least one region containing the data item. If such a region is found, the search can
be stopped and true can be returned as the evaluation result. If no containing region is present in the
index, the mismatch is likely to be detected early on anyway. Using this short-circuit optimization on
an R-tree proves to be a beneficial evaluation strategy as we will see in Section6. Even better results
could be achieved by using adaptive index-structures like the TV-tree [23] which—in contrast to R-
trees—are able to dynamically adapt the set of indexed dimensions. This can help to avoid indexing
unbounded dimensions in a predicate, which is desirable since unbounded dimensions in the index can
cause excessive overlap between index regions and therefore degrade index performance. Examining
the use of such advanced indexing techniques as well as the direct integration of application specific
improvements and tuning into the index itself are the subject of future research.

Figure 8 illustrates an example where a disjunctive predicate consisting of 6 conjunctive subpred-
icates is represented by an R-tree and evaluated against 4 different data items. The figure shows the
graphical representation of the predicate in the data space and the corresponding R-tree. For data item
iearly
miss , the fact that the data item does not satisfy the predicate can already be determined by matching it

with the root of the index tree. In contrast, for ilate
miss, the mismatch is not detected before the leaf level of

the index tree. While ihit
1 can be identified as a match by traversing one single path in the index tree, ihit

2
would normally require to visit two different leaf nodes. However, by using our short-circuit optimiza-
tion, the evaluation can be stopped and true can be returned after the first matching leaf node has been
found.

18

Variable Description

p disjunctive stream predicate
p′ disjunctive query predicate
c conjunctive subpredicate of stream predicate p
c′ conjunctive subpredicate of query predicate p′

n number of conjunctive subpredicates c in p
m number of conjunctive subpredicates c′ in p′

d number of dimensions in the data space

Table 2: Variables used during complexity analysis

5 Complexity Analysis

In this section, we analyze the best, average, and worst case time and space complexities of the matching
and evaluation algorithms introduced in Sections3 and 4.

5.1 Prerequisites

Before starting with the complexity analysis, we introduce some general prerequisites. Table 2 lists
the variables used throughout the complexity analysis together with their meaning. We use a single
dimension in the data space as the most fine-grained unit for time and space complexity analysis. For
time complexity, comparing two dimensions is the most fine-grained unit. Note that comparing two
dimensions always consists of comparing the upper and lower bounds of the two dimensions, i. e., always
leads to two value comparisons. Since this is the same for each comparison between two dimensions,
we abstract from the actual value comparisons and choose the comparison between two dimensions as
the most fine-grained unit for time complexity analysis. Equally, for space complexity analysis, the
most fine-grained unit is the memory required to store the information associated with a dimension in
the data space. Again, for each dimension, two values—its upper and its lower bound—have to be
stored. However, again we abstract from these values and choose the memory needed for storing all the
information of a single dimension as the most fine-grained unit for space complexity analysis.

Note that in the algorithm descriptions, d denotes a single dimension of the data space D, whereas
during complexity analysis, d denotes the number of dimensions in the data space D, i. e., d = |D|.

5.2 Quick Check (QC)

5.2.1 Time Complexity

• Best Case:
The best case for the QC algorithm occurs when the query subpredicate c′ already implies the first
stream subpredicate c of p, and c only references one of the d dimensions of the data space. Then,
only one single comparison between two dimensions of the data space is necessary. In this case,
the time complexity of the QC algorithm is constant and is in

Ω(1)

• Worst Case:
The worst case for the QC algorithm occurs when the query subpredicate c′ does not imply any of
the n stream subpredicates c of p, and each stream subpredicate references all d dimensions of the
data space. Then, for each of the n conjunctive subpredicates c in p, all d dimensions of the data

19

space need to be considered. In this case, the time complexity of the QC algorithm is linear in n
and d, and is in

O(n ·d)

• Average Case:
The average case for the QC algorithm occurs when the query subpredicate c′ is found to imply a
stream subpredicate c in p after checking half of the n subpredicates c in p, and each subpredicate
c in p on average references half of the d dimensions of the data space. In this case, the time
complexity of the QC algorithm is linear in n and d, and is in

Θ
(

n
2
· d

2

)
= Θ(n ·d)

5.2.2 Space Complexity

• Best Case:
The best case for the QC algorithm occurs when each stream subpredicate c in p as well as the
query subpredicate c′ only reference one of the d dimensions of the data space. Then, for each of
the n stream subpredicates c in p as well as for the query subpredicate c′, the information for only
one dimension needs to be stored. In this case, the space complexity of the QC algorithm is linear
in n and is in

Ω(n+ 1)

• Worst Case:
The worst case for the QC algorithm occurs when each stream subpredicate c in p as well as the
query subpredicate c′ references all of the d dimensions of the data space. Then, for each of the
n stream subpredicates c in p as well as for the query subpredicate c′, the information for all d
dimensions of the data space needs to be stored. In this case, the space complexity of the QC
algorithm is linear in n and d, and is in

O((n+ 1) ·d)

• Average Case:
The average case for the QC algorithm occurs when each stream subpredicate c in p as well as the
query subpredicate c′ references half of the d dimensions of the data space. Then, for each of the
n stream subpredicates c in p as well as for the query subpredicate c′, the information for half of
the d dimensions of the data space needs to be stored. In this case, the space complexity of the QC
algorithm is linear in n and d, and is in

Θ
(

(n+ 1) · d
2

)

5.2.3 Summary

The QC algorithm is an efficient algorithm for quickly determining obvious matches of a query subpred-
icate with a stream predicate. Its time and space complexities are at most linear. The complexities of the
index-based QC algorithm depend on the complexities of the employed index structure.

20

5.3 Heuristics with Simple Relaxation (HSR)

5.3.1 Time Complexity

For the HSR algorithm without quick check, the best, worst, and average time complexities are linear
in m and are in Ω(m), O(m), and Θ(m), respectively. This is due to the fact that, with the quick check
deactivated, the HSR algorithm simply iterates over all m conjunctive subpredicates in the query predicate
and disjunctively adds them to the stream predicate. The situation is different with the quick check
activated as is described in the following.

• Best Case:
The best case for the HSR algorithm with quick check occurs if, for each of the m query subpred-
icates c′ in p′, the quick check finds a matching subpredicate in the first stream subpredicate c in
p, and c only references one of the d dimensions of the data space. Then, the algorithm only has
to iterate over all m subpredicates of the query predicate and to compare two dimensions for each
query subpredicate. In this case, the time complexity of the HSR algorithm with quick check is
linear in m and is in

Ω(m)

• Worst Case:
The worst case for the HSR algorithm with quick check occurs if, for each of the m query sub-
predicates c′ in p′, the quick check iterates over all of the n stream subpredicates c in p without
finding a match, and each subpredicate in the stream predicate references all of the d dimensions
of the data space. Since each of the unmatched query subpredicates is disjunctively added to the
stream predicate, the number of conjunctive subpredicates in the stream predicate increases by one
each time the algorithm starts to consider the next conjunctive subpredicate of the query predicate.
Therefore, the number of comparisons between dimensions can be estimated as

m−1

∑
i=0

(n+ i) ·d =

(
m ·n+

m−1

∑
i=0

i

)
·d

arith.=
series

(
m ·n+

(m−1) ·m
2

)
·d

≤ (
m ·n+ m2) ·d

Consequently, the worst case time complexity of the HSR algorithm with quick check is quadratic
in m, linear in n and d, and is in

O
((

m ·n+ m2) ·d)
• Average Case:

The average case for the HSR algorithm with quick check occurs if, for each of the m query sub-
predicates c′ in p′, the quick check iterates over half of the n stream subpredicates c in p before
finding a match, and each subpredicate in the stream predicate references half of the d dimen-
sions of the data space. Furthermore, we assume that half of the m query subpredicates remain
unmatched and are therefore disjunctively added to the stream predicate, increasing the number
of conjunctive subpredicates in the stream predicate by one for half of the query subpredicates.

21

Therefore, the number of comparisons between dimensions can be estimated as

m−1

∑
i=0

(
n+ i

2

2

)
· d

2
=

(
m ·n+

1
2
·

m−1

∑
i=0

i

)
· d

4

arith.=
series

(
m ·n+

1
2
· (m−1) ·m

2

)
· d

4

≤ (
m ·n+ m2) ·d

Consequently, the average case time complexity of the HSR algorithm with quick check is quadratic
in m, linear in n and d, and is in

Θ
((

m ·n+ m2) ·d)
5.3.2 Space Complexity

The space complexities of the HSR algorithm are the same, whether the algorithm is executed with the
quick check activated or deactivated.

• Best Case:
The best case for the HSR algorithm occurs when each subpredicate only references one of the d
dimensions of the data space. Then, for each of the m query subpredicates c′ in p′ as well as each
of the n stream subpredicates c in p, only one dimension needs to be stored. In this case, the space
complexity of the HSR algorithm is linear in m and n, and is in

Ω(m+ n)

• Worst Case:
The worst case for the HSR algorithm occurs when each subpredicate references all of the d
dimensions of the data space. Then, for each of the m query subpredicates c′ in p′ as well as each
of the n stream subpredicates c in p, the information for all d dimensions of the data space needs
to be stored. In this case, the space complexity of the HSR algorithm is linear in m, n, and d, and
is in

O((m+ n) ·d)

• Average Case:
The average case for the HSR algorithm occurs when each subpredicate references half of the d
dimensions of the data space. Then, for each of the m query subpredicates c′ in p′ as well as each
of the n stream subpredicates c in p, the information for half of the d dimensions of the data space
needs to be stored. In this case, the space complexity of the HSR algorithm is linear in m, n, and
d, and is in

Θ
(

(m+ n) · d
2

)

5.3.3 Summary

The HSR algorithm without quick check is a simple relaxation algorithm with time complexity linear in
m and linear space complexity. Combining the HSR algorithm with the QC algorithm does not affect
space complexity but leads to quadratic time complexity in m in the worst and average case. It can be
noticed that the worst and average case time complexities are the same. Still, the HSR algorithm is a

22

simple and relatively fast algorithm. The HSR algorithm can only indirectly be supported by an index
when using an index-supported quick check. In this case, the complexities of the algorithm depend on
the complexities of the employed index structure.

5.4 Heuristics with Complex Relaxation (HCR)

5.4.1 Time Complexity

• Best Case:
The best case for the HCR algorithm without quick check occurs if, for each of the m query
subpredicates c′ of p′, the algorithm finds a matching subpredicate in the first stream subpredicate
c of p, and c only references one of the d dimensions of the data space. Then, the algorithm only
has to iterate over all m subpredicates of the query predicate and to compare two dimensions for
each query subpredicate. In this case, the time complexity of the HCR algorithm without quick
check is linear in m and is in

Ω(m)

The best case complexity of the HCR algorithm remains the same with the quick check activated.
The best case then occurs when the quick check finds a match for each query subpredicate c′ in p′

when comparing it to the first stream subpredicate c in p and furthermore, c references only one
of the d dimensions of the data space. Therefore, the best case complexity of the HCR algorithm
with quick check is the same as the best case complexity of the QC algorithm.

• Worst Case:
The worst case for the HCR algorithm without quick check occurs if, for each of the m query
subpredicates c′ of p′, the algorithm iterates over all of the n stream subpredicates c of p without
finding a match, and each subpredicate in the stream predicate references all of the d dimensions of
the data space. Since, for each pair of subpredicates c′ in p′ and c in p, and for each dimension in
the data space, the list of all d dimensions has to be iterated to compute v in line 20 of Algorithm8
on page 45, the worst case time complexity of the HCR algorithm without quick check is linear in
m and n, quadratic in d, and is in

O
(
m ·n ·d2)

The worst case complexity of the HCR algorithm with quick check has to additionally take into
account the worst case complexity of the QC algorithm. Since the quick check is executed before
the actual HCR algorithm, and in case the quick check does not yield a match, the normal HCR
algorithm is executed, the number of dimension comparisons of the QC algorithm and the HCR
algorithm have to be added. This yields

m ·n ·d + m ·n ·d2 = m ·n · (d + d2)
≤ 2 ·m ·n ·d2

Therefore, the worst case complexity of the HCR algorithm with quick check is still linear in m
and n, quadratic in d, and is in

O
(
m ·n ·d2)

• Average Case:
The average case for the HCR algorithm without quick check occurs if, for each of the m query
subpredicates c′ of p′, the algorithm iterates over half of the n stream subpredicates c of p before

23

finding a match, and each subpredicate in the stream predicate references half of the d dimen-
sions of the data space. Furthermore, we assume that half of the m query subpredicates remain
unmatched and are therefore relaxed during the execution of the algorithm. Therefore, the average
case time complexity of the HCR algorithm without quick check is linear in m and n, quadratic in
d, and is in

Θ

(
m · n

2
·
(

d
2

)2
)

= Θ
(
m ·n ·d2)

The average case complexity of the HCR algorithm with quick check is determined analogously
to the worst case. For the number of dimension comparisons, this yields

m · n
2
· d

2
+

m
2
·n ·
(

d
2

)2

≤ m ·n · (d + d2)
≤ 2 ·m ·n ·d2

Therefore, the average case complexity of the HCR algorithm with quick check is still linear in m
and n, quadratic in d, and is in

Θ
(
m ·n ·d2)

5.4.2 Space Complexity

The space complexities of the HCR algorithm are the same as for the HSR algorithm since both al-
gorithms only need to store the query and the stream predicate but, in contrast to the exact matching
algorithm introduced below, do not split and therefore create additional subpredicates.

5.4.3 Summary

The time and space complexities of the HCR algorithm are the same whether the quick check is activated
or deactivated. It can also be noticed that the worst and average case time complexities are the same.
Although they are quadratic in d, the algorithm is still relatively fast compared to the exact solution
analyzed below. Like the HSR algorithm, the HCR algorithm can only indirectly be supported by an
index when using an index-supported quick check. In this case, the complexities of the algorithm depend
on the complexities of the employed index structure.

5.5 Exact Matching (EM)

5.5.1 Time Complexity

The time complexity of the EM algorithm is the same for each of the three split strategies introduced in
Section 3.5. This is due to the fact that all strategies have to examine the same number of subparts in
the best, worst, and average case. They only do so in different order. The time complexity is therefore
only considered for the EM algorithm with and without quick check in general, without distinguishing
the different split strategies.

• Best Case:
The best case for the EM algorithm without quick check occurs if, for each of the m query sub-
predicates c′ of p′, the algorithm finds a matching subpredicate in the first stream subpredicate c of
p, and c only references one of the d dimensions of the data space. Then, the algorithm only has
to iterate over all m subpredicates of the query predicate and to compare two dimensions for each

24

query subpredicate. In this case, the time complexity of the EM algorithm without quick check is
linear in m and is in

Ω(m)

The best case complexity of the EM algorithm remains the same with the quick check activated
since the best case then occurs when the quick check finds a match for each query subpredicate
c′ in p′ when comparing it to the first stream subpredicate c in p and furthermore, c references
only one of the d dimensions of the data space. Therefore, the best case complexity of the EM
algorithm with quick check is the same as the best case complexity of the QC algorithm.

• Worst Case:
The worst case for the EM algorithm without quick check occurs if, for each of the m query sub-
predicates c′ of p′, the algorithm iterates over all of the n stream subpredicates c of p without
finding a match, each subpredicate in the stream predicate references all of the d dimensions of
the data space, and the intervals defined by the stream subpredicate in each dimension are com-
pletely contained in the respective intervals defined by the query subpredicate in the corresponding
dimensions. Then, the algorithm has to split the query subpredicate into three parts during each
comparison (lines 7–10 in Algorithm 9 on page 46), two of which have to be taken into account in
future comparisons. Since each of the unmatched query subpredicates is disjunctively added to the
stream predicate, the number of conjunctive subpredicates in the stream predicate increases by one
each time the algorithm starts to consider the next conjunctive subpredicate of the query predicate.
Therefore, with d > 0, the number of comparisons between dimensions can be estimated as

m−1

∑
i=0

n+i−1

∑
j=0

(
(2d) j ·d) geom.

=
series

m−1

∑
i=0

(
(2d)n+i−1

2d−1
·d
)

=
d

2d−1
·
(

m−1

∑
i=0

(
(2d)n+i−1

))

=
d · (2d)n

2d−1
·
(

m−1

∑
i=0

(2d)i−m

)

geom.
=

series

d · (2d)n

2d−1
·
(

(2d)m−1
2d−1

−m

)
≤ d · (2d)m+n

Therefore, the worst case time complexity of the EM algorithm without quick check is polynomial
in d, exponential in m and n, and is in

O
(
d · (2d)m+n

)
The worst case time complexity of the EM algorithm with the quick check activated has to addi-
tionally take into account the worst case time complexity of the quick check algorithm. Since the
quick check is executed before the actual EM algorithm and in case the quick check does not yield
a match, the normal EM algorithm is executed, the number of dimension comparisons of the quick

25

check algorithm and the EM algorithm have to be added. This yields

m−1

∑
i=0

(
(n+ i) ·d +

n+i−1

∑
j=0

(2d) j ·d
)

=
m−1

∑
i=0

(n+ i) ·d +
m−1

∑
i=0

n+i−1

∑
j=0

(2d) j ·d

≤ (
m ·n+ m2) ·d + d · (2d)m+n

=
(
m ·n+ m2 +(2d)m+n) ·d

Therefore, the worst case time complexity of the EM algorithm with quick check is polynomial in
d, exponential in m and n, and is in

O
((

m ·n+ m2 +(2d)m+n) ·d)
• Average Case:

The average case for the EM algorithm without quick check occurs if, for each of the m query
subpredicates c′ of p′, the algorithm iterates over half of the n stream subpredicates c of p before
finding a match, each subpredicate in the stream predicate references half of the d dimensions of
the data space, and the intervals defined by the stream subpredicate in each dimension overlap with
the respective intervals defined by the query subpredicate in the corresponding dimensions. Then,
the algorithm has to split the query subpredicate into two parts during each comparison (lines 11–
15 in Algorithm 9 on page 46), one of which has to be taken into account in future comparisons.
Furthermore, we assume that half of the m query subpredicates remain unmatched and are therefore
disjunctively added to the stream predicate, increasing the number of conjunctive subpredicates in
the stream predicate by one for half of the query subpredicates. Therefore, assuming d > 4, the
number of comparisons between dimensions can be estimated as

m−1

∑
i=0

⌈
n+ i

2
2

⌉
−1

∑
j=0

(
d
2

) j

· d
2

geom.
=

series

m−1

∑
i=0

(
d
2

)⌈ n+ i
2

2

⌉
−1

d
2 −1

· d
2

=
d

d−2
·
⎛
⎝m−1

∑
i=0

(
d
2

)⌈ n+ i
2

2

⌉
−m

⎞
⎠

≤ d
d−2

·
(

m−1

∑
i=0

(
d
2

) n
2�
·
(

d
2

) i
4�
−m

)

≤ d ·(d
2

)n

d−2
·

m−1

∑
i=0

(
d
2

)i

geom.
=

series

d ·(d
2

)n

d−2
·
(

d
2

)m−1
d
2 −1

≤ d ·
(

d
2

)m+n

Therefore, the average case time complexity of the EM algorithm without quick check is polyno-
mial in d, exponential in m and n, and is in

Θ

(
d ·
(

d
2

)m+n
)

26

The average case complexity of the EM algorithm with quick check is determined analogously to
the worst case. For the number of dimension comparisons, this yields

m−1

∑
i=0

⎛
⎜⎜⎝
(

n+ i
2

2

)
· d

2
+

⌈
n+ i

2
2

⌉
−1

∑
j=0

(
d
2

) j

· d
2

⎞
⎟⎟⎠ =

m−1

∑
i=0

(
n+ i

2

2

)
· d

2
+

m−1

∑
i=0

⌈
n+ i

2
2

⌉
−1

∑
j=0

(
d
2

) j

· d
2

≤ (
m ·n+ m2) ·d + d ·

(
d
2

)m+n

=

(
m ·n+ m2 +

(
d
2

)m+n
)
·d

Therefore, the average case time complexity of the EM algorithm with quick check is polynomial
in d, exponential in m and n, and is in

Θ

((
m ·n+ m2 +

(
d
2

)m+n
)
·d
)

5.5.2 Space Complexity

The space complexities of the EM algorithm are the same, whether the algorithm is executed with the
quick check activated or deactivated.

• Best Case:
The best case for all variants of the EM algorithm occurs when each subpredicate only references
one of the d dimensions of the data space and no splitting of subpredicates occurs in the course of
the algorithm. Then, for each of the m query subpredicates c′ of p′ as well as each of the n stream
subpredicates c of p, the information for only one dimension of the data space needs to be stored.
In this case, the space complexity of the EM algorithm is linear in m and n, and is in

Ω(m+ n)

• Worst Case:
The worst case for the EM algorithm occurs when each subpredicate references all of the d di-
mensions of the data space, and each query subpredicate c′ of p′ needs to be split in three parts in
each dimension (lines 7–10 of Algorithm 9 on page 46), two of which need to be stored in a queue
for later matching. In the worst case, during each split, two additional conjunctive subpredicates
are created. Using the BFS strategy, this leads to 2d additional subpredicates after comparing all
dimensions and (2d)n additional subpredicates after comparing a query subpredicate c′ to all n
stream subpredicates c of p in the worst case. This is indicated by the hatched subparts in Fig-
ure 7(a). All subparts at the leaf level of the tree need to be stored in memory. Then, for each of the
m query subpredicates c′ of p′ as well as each of the n stream subpredicates c of p, the information
for all d dimensions of the data space needs to be stored. This is also true for all the conjunctive
subpredicates that were newly created in the course of the algorithm due to splitting existing query
subpredicates. Therefore, in this case, the space complexity of the EM algorithm is linear in m,
polynomial in d, exponential in n, and is in

O((m+ n+(2d)n) ·d)

27

The DFS strategy only produces up to (n−1) ·(2d−1)+2d subparts during matching as indicated
by the hatched subparts in Figure 7(b). Therefore, its worst case space complexity is linear in m
and n, quadratic in d, and is in

O((m+ n+(n−1) · (2d−1)+ 2d) ·d)

The MIX strategy produces up to (n−2) · (2d−1) ·2d +(2d)2 subparts during matching as indi-
cated by the hatched subparts in Figure 7(c). Therefore, its worst case space complexity is linear
in m and n, cubic in d, and is in

O
((

m+ n+(n−2) · (2d−1) ·2d +(2d)2) ·d)
• Average Case:

The average case for the EM algorithm occurs when each subpredicate references half of the d
dimensions of the data space and half of the query subpredicates c′ of p′ need to be split in two parts
in half of the dimensions (lines 23–27 of Algorithm10), one of which needs to be stored in a queue
for later matching. In the average case, during each split, one additional conjunctive subpredicate
is created. Using the BFS strategy, this leads to d/2 additional subpredicates after comparing
half of the dimensions and (d/2)n/2 =

√
(d/2)n additional subpredicates after comparing a query

subpredicate to half of the n stream subpredicates on average. Then, for each of the m query
subpredicates c′ of p′ as well as each of the n stream subpredicates c of p, the information for half
of the d dimensions of the data space needs to be stored. This is also true for all the conjunctive
subpredicates that were newly created in the course of the algorithm. Therefore, in this case, the
space complexity of the EM algorithm is linear in m, polynomial in d, exponential in n, and is in

Θ
((

m+ n+
√

(d/2)n
)
· d

2

)

The DFS strategy only produces ((n−1)/2) ·(d/2−1)+d/2 subparts on average during matching.
Therefore, its average case space complexity is linear in m and n, quadratic in d, and is in

Θ
((

m+ n+
n−1

2
·
(

d
2
−1

)
+

d
2

)
· d

2

)

The MIX strategy produces ((n− 2)/2) · (d/2− 1) · (d/2) + (d/2)2 subparts on average during
matching. Therefore, its average case space complexity is linear in m and n, cubic in d, and is in

Θ

((
m+ n+

n−2
2
·
(

d
2
−1

)
· d

2
+
(

d
2

)2
)
· d

2

)

5.5.3 Summary

The EM algorithm with BFS strategy shows exponential time and space complexity in the worst and av-
erage case. Since the implication problem for disjunctive predicates has been proven to be NP-hard [27],
the exponential time complexity cannot be improved substantially. However, it is possible to improve the
space complexity to cubic in the number of dimensions in the data space and linear in all other parame-
ters using the MIX instead of the BFS strategy, and even to quadratic in the number of dimensions in the
data space and linear in all other parameters using the DFS strategy. The complexities of the index-based
EM algorithm depend on the complexities of the employed index structure.

28

5.6 Standard Evaluation (SE)

5.6.1 Time Complexity

• Best Case:
The best case for the SE algorithm occurs when the first conjunctive subpredicate c of the predicate
p to be evaluated references only one of the d dimensions of the data space, and the interval defined
in c for that dimension contains the value of the corresponding dimension in i. Then, only one
value to interval comparison is necessary to evaluate the predicate to true. In this case, the time
complexity of the SE algorithm is constant and is in

Ω(1)

• Worst Case:
The worst case for the SE algorithm occurs when every conjunctive subpredicate c of the predicate
p to be evaluated references all d dimensions of the data space, but none of them matches the data
item i and the mismatch in each case is only detected after all dimensions have been considered.
Then, all n subpredicates of predicate p and, for each subpredicate, all d dimensions of the data
space need to be iterated and compared to the values in i. In this case, the time complexity of the
SE algorithm is linear in n and d, and is in

O(n ·d)

• Average Case:
The average case for the SE algorithm occurs when every conjunctive subpredicate of the predicate
p to be evaluated references half of the d dimensions of the data space, a match is found after con-
sidering half of the n subpredicates of predicate p, and mismatches are detected after considering
half of the dimensions referenced in the corresponding subpredicate on average. Then, half of the
n subpredicates of predicate p and, for each subpredicate, one quarter of the d dimensions of the
data space need to be iterated and compared to the values in i. In this case, the time complexity of
the SE algorithm is linear in n and d, and is in

Θ
(

n
2
· d

4

)
= Θ(n ·d)

5.6.2 Space Complexity

• Best Case:
The best case for the SE algorithm occurs when each conjunctive subpredicate c in the predicate
p to be evaluated references only one of the d dimensions of the data space. Additionally, the d
values of the data item i have to be stored. In this case, the space complexity of the SE algorithm
is linear in n and d, and is in

Ω(n+ d)

• Worst Case:
The worst case for the SE algoritm occurs when each conjunctive subpredicate c in the predicate
p to be evaluated references all of the d dimensions of the data space. Additionally, the d values
of the data item i have to be stored. In this case, the space complexity of the SE algorithm is linear
in n and d, and is in

O(n ·d + d) = O((n+ 1) ·d)

29

Time
Best Case Average Case Worst Case

QC Ω(1) Θ(n ·d) O(n ·d)
HSR Ω(m) Θ(m) O(m)
HSR+QC Ω(m) Θ

((
m ·n+ m2

) ·d) O
((

m ·n+ m2
) ·d)

HCR Ω(m) Θ
(
m ·n ·d2

)
O
(
m ·n ·d2

)
HCR+QC Ω(m) Θ

(
m ·n ·d2

)
O
(
m ·n ·d2

)
EM Ω(m) Θ(d · (d/2)m+n) O(d · (2d)m+n)
EM+QC Ω(m) Θ

((
m ·n+ m2 +(d/2)m+n

) ·d) O
((

m ·n+ m2 +(2d)m+n
) ·d)

Table 3: Time complexities of predicate matching algorithms

• Average Case:
The average case for the SE algorithm occurs when each conjunctive subpredicate c in the predicate
p to be evaluated references half of the d dimensions of the data space. Additionally, the d values
of the data item i have to be stored. In this case, the space complexity of the SE algorithm is linear
in n and d, and is in

Θ
(

n · d
2

+ d

)
= Θ

((n
2

+ 1
)
·d
)

5.6.3 Summary

The SE algorithm has linear time and space complexities in the worst and average case. This causes it to
slow down for large numbers of subpredicates n and dimensions d. Therefore, we have introduced the
index-based evaluation strategy alleviating this problem.

5.7 Index-based Evaluation (IE)

The best, worst, and average time and space complexities of the index-based evaluation depend on the
respective complexities of the employed index structure.

5.8 Summary

The time and space complexities of the predicate matching algorithms are summarized in Tables3 and 4,
respectively. Since the time complexity of the EM algorithm is the same for all three splitting strategies, it
is only shown once for the generic EM algorithm in Table3. Also, in Table 4, the space complexities for
the algorithms with quick check are omitted since they are the same as for the corresponding algorithms
without quick check.

The time and space complexities of the predicate evaluation algorithms are summarized in Tables5
and 6, respectively. In Table 5, I point

Ω (n,d), Ipoint
Θ (n,d), and Ipoint

O (n,d) denote the index structure depen-
dent best case, average case, and worst case time complexity of a point containment query on the corre-
sponding index structure, respectively. Analogously, in Table6, Ispace

Ω (n,d), Ispace
Θ (n,d), and Ispace

O (n,d)
denote the index structure dependent best case, average case, and worst case space complexity of the
corresponding index structure, respectively. In addition to the index, the values in the d dimensions of
the data item i need to be stored.

30

Space
Best Case Worst Case

QC Ω(n+ 1) O((n+ 1) ·d)
HSR Ω(m+ n) O((m+ n) ·d)
HCR Ω(m+ n) O((m+ n) ·d)
EM-BFS Ω(m+ n) O((m+ n+(2d)n) ·d)
EM-DFS Ω(m+ n) O((m+ n+(n−1) · (2d−1)+ 2d) ·d)
EM-MIX Ω(m+ n) O

((
m+ n+(n−2) · (2d−1) ·2d +(2d)2

) ·d)
Space

Average Case

QC Θ((n+ 1) ·d/2)
HSR Θ((m+ n) ·d/2)
HCR Θ((m+ n) ·d/2)

EM-BFS Θ
((

m+ n+
√

(d/2)n
)
· (d/2)

)
EM-DFS Θ((m+ n+((n−1)/2) · ((d/2)−1)+ (d/2)) · (d/2))
EM-MIX Θ

((
m+ n+((n−2)/2) · ((d/2)−1) · (d/2)+ ((d/2))2

) · (d/2)
)

Table 4: Space complexities of predicate matching algorithms

Time
Best Case Average Case Worst Case

SE Ω(1) Θ(n ·d) O(n ·d)
IE Ω(I point

Ω (n,d)) Θ(Ipoint
Θ (n,d)) O(Ipoint

O (n,d))

Table 5: Time complexities of predicate evaluation algorithms

6 Benchmarks

In this section, we present some of our experimental evaluation results. First, we describe the imple-
mentation of the algorithms presented in this paper and the benchmark setting. Second, we show some
comparative benchmark results for predicate matching and evaluation.

6.1 Implementation and Setting

All algorithms presented in this paper have been implemented in Java 5.0. The internal representation of a
disjunctive predicate contains a set of conjunctive subpredicates. The entries in this set are automatically
kept sorted in decreasing order in terms of the volume of the hyperrectangle representing the predicate
in multi-dimensional space. If predicates have unbounded interval ends, a predicate is “smaller” than

Space
Best Case Average Case Worst Case

SE Ω(n+ d) Θ((n/2+ 1) ·d) O((n+ 1) ·d)
IE Ω(Ispace

Ω (n,d)+ d) Θ(Ispace
Θ (n,d)+ d) O(Ispace

O (n,d)+ d)

Table 6: Space complexities of predicate evaluation algorithms

31

another one in our terminology if it has less unbounded interval ends or an equal number of unbounded
interval ends and less volume when restricting the volume computation to the finite dimensions. The
purpose of the sorting is to begin comparing the larger subpredicates when iterating the subpredicate
list of a disjunctive predicate. This helps to find matches earlier or match as much of a subpredicate as
possible early on to potentially reduce the number of matching steps. Also, the intervals for each dimen-
sion within a conjunctive predicate are sorted in increasing order according to their length. Considering
shorter intervals first increases the probability of comparing two disjoint intervals early on, therefore
being able to break the comparison with the current subpredicate and go on to the next without having
to consider the remaining dimensions. These optimizations are used for all matching and evaluation
algorithms throughout. Further, constants in atomic predicates are implemented as double values.

Various index structures can be used in our implementation via a generic interface. For each index,
the interface is implemented by an adapter class that delegates the interface method calls to the appro-
priate method calls of the underlying index structure and performs any necessary conversions. We have
compared various implementations of R-tree variants for our benchmarks. For the matching benchmark,
we have decided to use an efficient lightweight main memory implementation of a standard R-tree with
quadratic split strategy [17]. This specific implementation turned out to be the fastest of all the index
structures that we have tested for predicate matching and evaluation. For the evaluation benchmark,
however, we have switched to a—in our tests—slightly slower but more generic and flexible main mem-
ory implementation of an R*-tree since this implementation already supports our short-circuit evaluation
optimization without having to edit the index source code [28]. We have also repeated our matching
benchmarks using this R*-tree. In our tests, all index structures use a minimum node capacity of 5 and a
maximum node capacity of 10.

All tests ran on a single server blade with two 2.8 Ghz Intel Xeon processors, 4 GB of main memory,
and SuSE Linux Enterprise Server 9.

6.2 Predicate Matching

For the predicate matching benchmarks, we randomly generated a set of query predicates and a set of
stream predicates by setting the number of dimensions and subpredicates and randomly choosing the
constant values for the interval bounds of each dimension in each subpredicate. The values were chosen
from a list of 21 distinct values between 0 and 100 using a normal distribution for query predicates
and a uniform distribution for stream predicates. Each subpredicate defines a finite interval in each
dimension of the data space. For the tests shown in this paper, we used a set of 60 query predicates that
were matched against a set of 20 stream predicates. We matched each query predicate with each stream
predicate, i. e., 1200 predicate pairs were matched in total. Figures 9 to 11 show the average matching
time per predicate pair in milliseconds for the heuristics with simple relaxation (HSR+QC), the heuristics
with complex relaxation (HCR+QC), and the exact matching algorithm with breadth-first split strategy
without (EM+QC) as well as with index support (EM+QC+I). All algorithms use the quick check (QC).
Note that the matching time is scaled logarithmically on each of the three diagrams. If nothing else is
stated, the default settings used for the tests were 6 dimensions, 2 subpredicates per query predicate, and
20 subpredicates per stream predicate. We use relatively low values for the numbers of dimensions and
subpredicates in the matching tests to be able to include the EM approach, which is not feasible for large
problem sizes, in the comparison. Note that, in our DSMS scenario, matching time is a part of query
compilation time and is therefore less important if dealing with long-running continuous queries.

In Figure 9, we varied the number of distinct dimensions in the data space that are referenced in each
predicate. It can clearly be seen that the matching time of the EM algorithm without index support grows
exponentially with increasing number of dimensions. Using the index approach significantly reduces
matching time and can therefore keep the approach feasible for larger problem sizes. It does not even

32

 0.001

 0.01

 0.1

 1

 10

 100

2 3 4 5 6

A
vg

. M
at

ch
in

g
T

im
e

(m
se

c)

Dimensions

HSR+QC
HCR+QC
EM+QC
EM+QC+I

Figure 9: Varying number of dimensions

 0.01

 0.1

 1

 10

 100

 1000

1 2 3

A
vg

. M
at

ch
in

g
T

im
e

(m
se

c)

Subpredicates per Query Predicate

HSR+QC
HCR+QC
EM+QC
EM+QC+I

Figure 10: Varying query predicate size

 0.01

 0.1

 1

 10

 100

 1000

10 20 30

A
vg

. M
at

ch
in

g
T

im
e

(m
se

c)

Subpredicates per Stream Predicate

HSR+QC
HCR+QC
EM+QC
EM+QC+I

Figure 11: Varying stream predicate size

 0.001

 0.01

 0.1

 1

 10

 100

2 3 4 5 6

A
vg

. M
at

ch
in

g
T

im
e

(m
se

c)

Dimensions

HSR+QC
HCR+QC
EM−BFS+QC+I
EM−BFS+QC
EM−DFS+QC
EM−MIX+QC

Figure 12: Varying number of dimensions

differ that much from the HCR approach which has polynomial complexity and whose running time
increases linearly. The matching time of the HSR approach also increases linearly but is generally lower
than for the other algorithms since less complex computations have to be performed.

The effects of a varying number of subpredicates in the query and the stream predicate are shown
in Figures 10 and 11, respectively. Again, the index-based version of the EM algorithm clearly outper-
forms the version without index and can compete roughly with the HCR approach. In each case, the
performance gain achieved through multi-dimensional indexing is about two orders of magnitude.

We repeated the above tests with predicates containing infinite intervals. The predicates were gener-
ated by randomly choosing the finite dimensions of the data space for each subpredicate using a uniform
distribution. The remaining dimensions were not referenced by the subpredicate and were therefore
unbounded. In this setting, the performance gain of the index was about an order of magnitude less.
However, the index-based EM algorithm still was superior to the version without index, especially for
larger numbers of dimensions and subpredicates.

We furthermore repeated the matching tests using the R*-tree index that we used for the evaluation
benchmarks below instead of the lightweight R-tree index implementation. Also, we included the exact
matching algorithms with depth-first (EM-DFS) and mixed split strategy (EM-MIX) in addition to the
exact matching algorithm with breadth-first split strategy (EM-BFS). The results shown in Figures 12
to 14 indicate that the R*-tree is a little bit slower in our tests than the R-tree index of the previous

33

 0.01

 0.1

 1

 10

 100

 1000

1 2 3

A
vg

. M
at

ch
in

g
T

im
e

(m
se

c)

Subpredicates per Query Predicate

HSR+QC
HCR+QC
EM−BFS+QC+I
EM−BFS+QC
EM−DFS+QC
EM−MIX+QC

Figure 13: Varying query predicate size

 0.01

 0.1

 1

 10

 100

 1000

10 20 30

A
vg

. M
at

ch
in

g
T

im
e

(m
se

c)

Subpredicates per Stream Predicate

HSR+QC
HCR+QC
EM−BFS+QC+I
EM−BFS+QC
EM−DFS+QC
EM−MIX+QC

Figure 14: Varying stream predicate size

 0.01

 0.1

 1

 10

 100

50 100 250 500

A
vg

. M
at

ch
in

g
T

im
e

(m
se

c)

Subpredicates per Stream Predicate

HSR+QC
HCR+QC
EM−DFS+QC
EM−MIX+QC

Figure 15: Matching large predicates

benchmarks. Also, with growing number of dimensions and subpredicates in the query and stream
predicates, the EM-DFS and EM-MIX algorithm variants increasingly outperform the EM-BFS variant
without as well as with index support. The difference in matching time between the EM-DFS and EM-
MIX variants is, however, marginal in our tests. As already mentioned in Section3.6, index support for
the EM-DFS and EM-MIX algorithm variants is not beneficial using the R-tree indexes we considered
since the overhead for updating the index structure by far outweighs its benefits.

In another test, we investigated how the matching algorithms perform for larger predicates, i. e.,
stream predicates with a larger number of subpredicates. Figure 15 shows the results. The EM-BFS
algorithm variant is missing in the figure since it was not able to process stream predicates with more
than 30 subpredicates without running out of main memory. As the figure shows, the performance of
the EM-DFS and EM-MIX algorithm variants is comparable to that of the HCR algorithm for up to 50
subpredicates in the stream predicate. For 500 subpredicates, HCR is about a factor of 3 faster than the
exact matching variants.

To illustrate the differences in predicate relaxation during predicate matching between the matching
algorithms, we randomly generated a predicate with 6 dimensions and 20 subpredicates representing a
stream predicate. We also generated 4 predicates with 6 dimensions and 2 subpredicates each, which
represent query predicates. Predicate generation was done as described above except that the values for
the interval bounds were chosen among 6 distinct values between 0 and 100 for the query predicates and

34

pA pB pC pD

HSR 66.31 66.37 66.37 66.44
HSR+QC 66.31 66.37 66.37 66.44
HCR 66.31 67.93 69.26 69.82
EM 66.31 66.37 66.37 66.44

Table 7: Selectivities for combined test (%)

among 4 distinct values for the stream predicate. We then matched the stream predicate with the first
query predicate to obtain predicate pA. Predicate pA was then matched with the second query predicate
to obtain predicate pB. Predicate pB was again matched with the third query predicate to obtain predicate
pC which was in turn matched with the fourth query predicate to obtain predicate pD. Matching was
performed with the HSR, the HSR+QC, the HCR, and the EM algorithms. Note that the use of the quick
check for HCR and EM and the use of index-based matching for all algorithms has no influence on the
structure of the resulting predicates. Predicates pA to pD were then evaluated using one million uniformly
distributed data items. Table 7 shows the results for the observed selectivities of all four predicates
depending on the matching algorithm that produced them. As expected, HSR, HSR+QC, and EM yield
predicates with identical selectivities because these algorithms produce exact predicates that do not cause
any false drops. Also, it can be seen that predicates pA and pC need to be relaxed to obtain predicates
pB and pD, respectively. The HCR algorithm relaxes the predicate during each matching step and yields
higher selectivity values which shows that this algorithm causes false drops. However, the increase in
selectivity induced by the false drops never exceeds 3.5 % which indicates that the approximation made
by the HCR algorithm stays close to the exact solution in this test.

The difference between the various matching algorithms in the ability to detect matching predicates
that do not need to be relaxed is illustrated by the following test. Using a randomly generated set of
60 query and 20 stream predicates with 3 possibly unbounded dimensions, 3 subpredicates per query
predicate, and 30 subpredicates per stream predicate, the EM algorithm successfully matched 933 out
of the 1200 predicate pairs without relaxation. The remaining algorithms, except the HSR algorithm
without QC, detected only 660 matching pairs. This means that the heuristics missed 273 matches in this
example. The HSR algorithm without QC of course never detects any matches at all.

Summarizing, we can state that the EM algorithm is applicable in practice as long as the problem size,
i. e., the number of dimensions in the data space and the number of subpredicates in the stream predicate,
is reasonably low. However, performance quickly degrades with increasing problem size. This effect can
be alleviated by combining the EM algorithm with a multi-dimensional index on the subpredicates of the
stream predicate. Admittedly, the R-tree index structures used by us only yield a benefit when used with
the EM algorithm with BFS split strategy. For the other split strategies, the maintenance overhead of these
index structures is too high. Since the DFS and MIX split strategies outperform the BFS split strategy by
far in all tests and are applicable for larger problem sizes due to much less memory consumption, they
are the preferred choice. Combining them with less maintenance-intensive index structures could yield
a further performance benefit. For very large problem sizes, the exponential time complexity of the EM
algorithm becomes prohibitive. In this case, the heuristics have to be used instead. Both heuristics, HSR
as well as HCR, perform and scale well with increasing problem size. Also, the increase in predicate
selectivity induced by the approximation made when using HCR proves to be low in our tests.

6.3 Predicate Evaluation

In contrast to predicate matching time, predicate evaluation time is performance critical in our DSMS
scenario. The predicate evaluation benchmarks were carried out by evaluating a given predicate against

35

one million randomly generated data items with values distributed uniformly between 0 and 100 for
each dimension. Predicates were also again generated randomly using a certain number of subpredicates
for disjunctively covering an area of the data space. The remaining subpredicates were placed in the
middle of that area using a normal distribution for placing the center point of each subpredicate. Since
data items are distributed uniformly in the data space, the percentage of the data space covered by the
predicate yields the predicate’s selectivity. Unless otherwise stated, all parameters take default values
which means 3 dimensions, 100 subpredicates in the predicate to be evaluated, and a predicate selectivity
of 1 %. We choose a larger number of subpredicates for the evaluation benchmark than for the matching
benchmark since we expect many subpredicates to be introduced by predicate relaxation in the EM and
especially the HSR matching approaches. In our tests, predicates have an overlap of 50 %. This is
achieved by using half of the subpredicates for disjunctively covering the area of the data space needed
to obtain the desired selectivity and placing the remaining subpredicates within this area as described
above. Figures 16 to 18 show the throughput of predicate evaluation in data items per millisecond for
the standard evaluation (SE), the index-based evaluation (IE), and the index-based evaluation with short-
circuit optimization (IE+SC).

Figure 16 shows the throughput for a varying number of dimensions in the data space. Clearly, index-
based evaluation is superior for the given settings. Short-circuiting the evaluation yields an additional
performance gain of about 20 %. For all three algorithms, throughput decreases only moderately for an
increasing number of dimensions.

The number of subpredicates in the predicate to be evaluated is varied in Figure17. Again, index-
based evaluation is clearly superior to standard evaluation and performance for the index-based approach
degrades slower with increasing number of subpredicates than for the standard approach. For 5000
subpredicates, the index-based approach is still better than the standard evaluation for 10 subpredicates.

In another test, we varied the selectivity of the predicate to be evaluated between 1 %, meaning that
only one in a hundred data items satisfies the predicate, and 100 %, which means that all data items
satisfy the predicate. The results are shown in Figure 18. Obviously, the lower the selectivity, the
better the index-based solutions perform. In contrast, the standard evaluation performs better for higher
selectivities. This is due to the fact that the index can identify a non-qualifying data item early on, for
example when comparing it to the root of the index tree if the data item lies outside the root box of the
index. In contrast, it has to descend to the leaves in the tree if the data item qualifies. For the standard
evaluation it is vice versa. A qualifying data item can be identified early on because as soon as it lies
within the current subpredicate, no further comparisons with the remaining subpredicates are necessary.
If a data item does not qualify, all subpredicates need to be considered in order to be sure that no matching
subpredicate exists.

It can roughly be expected from Figure 18 that for our default settings and for 50 % subpredicate
overlap, standard evaluation is better than index-based evaluation for selectivity values above about 70 %
and better than index-based evaluation with short-circuit optimization for selectivity values above about
90 %. With less overlap between subpredicates the situation changes in favor of the index-based so-
lutions. For overlap ratios up to 40 %, the index-based evaluation with short-circuit optimization is
superior for all selectivities when using default values for the other parameters. Higher overlap hurts
the index-based solutions as more overlap means that more paths need to be traversed in the tree. This
effect is worse for the index-based evaluation without short-circuit optimization. However, selectivities
are expected to be low in practice since users are mostly interested in very specific parts of the available
information. Also, the number of dimensions in our DSMS scenario is supposed to be moderate since,
e. g., sensor data streams rarely contain more than about 10 to 20 dimensions per data item. Further, often
only a small subset of the available dimensions is actually referenced by queries. In contrast, the number
of subpredicates can become large (in the order of many thousand) if many queries are registered. This
is due to the effects of data stream widening, especially if the HSR approach is used.

36

 0

 200

 400

 600

 800

 1000

 1200

2 3 4 5 6 7 8 9 10 11 12

T
hr

ou
gh

pu
t (

D

at
a

It
em

s/
m

se
c)

Dimensions

SE
IE

IE+SC

Figure 16: Varying Number of Dimensions

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

10 50 100 500 1000 5000

T
hr

ou
gh

pu
t (

D

at
a

It
em

s/
m

se
c)

Subpredicates

SE
IE

IE+SC

Figure 17: Varying Predicate Size

 0

 200

 400

 600

 800

 1000

 1200

1 5 10 25 50 75 100

T
hr

ou
gh

pu
t (

D

at
a

It
em

s/
m

se
c)

Selectivity (%)

SE
IE

IE+SC

Figure 18: Varying Predicate Selectivity

Table 8 shows the relative throughput of the three predicate evaluation algorithms for varying sub-
predicate overlap ratios of the evaluated predicate with low (σ = 10%) and high (σ = 75%) selectivities.
The baseline is the throughput of the standard evaluation (SE) which is set to 100 % in each case. For
low selectivity values, the index-based evaluation (IE) and the index-based evaluation with short-circuit
optimization yield a performance gain of about factor 6 and 11, respectively. For high selectivity val-
ues, the index-based evaluation is already inferior to the standard evaluation. The index-based evaluation
with short-circuit optimization is however still superior by about 50 % to 85 %. This shows that the short-
circuit optimization yields a major improvement over the non-optimized index approach and makes index
use beneficial even for high predicate overlap ratios and selectivity values.

Selectivity σ = 10% σ = 75%
Overlap 0 % 15 % 25 % 30 % 50 % 0 % 15 % 25 % 30 % 50 %

SE 100 100 100 100 100 100 100 100 100 100
IE 644 690 670 633 655 74 85 89 84 79
IE+SC 1215 1120 1114 1015 1088 160 156 185 181 160

Table 8: Relative throughput for varying predicate overlap (%)

37

The fact that the throughput for each algorithm does not show a stable trend for increasing overlap
ratios in Table 8 is due to the fact that, for each overlap ratio, a new predicate has been randomly gen-
erated and the characteristics of the different predicates can therefore not be fully controlled. However,
variations are about the same in relation for all three algorithms.

Summarizing, we can say that the index-based evaluation is beneficial especially for predicates with
many subpredicates and realistically low selectivity values. It yields performance gains of up to three
orders of magnitude for predicates with 50 % overlap and even more if overlap is less. The disadvantages
of multi-dimensional index structures like the R-tree when indexing higly overlapping regions can largely
be alleviated by the short-circuit optimization.

7 Related Work

In this section, we present an overview of related work in the fields of predicate handling, multi-
dimensional indexing, and data stream management.

7.1 Predicate Handling

Efficient handling of predicates has been a research topic for many years. Handling of conjunctive
predicates has already been examined in the early 1980s [25] and deals with problems like predicate
representation and minimization as well as equivalence and satisfiability checking. Implication checking
for conjunctive predicates has also been dealt with [27]. Also, detailed studies for solving satisfiabil-
ity, implication, and equivalence problems for conjunctive predicates concerning different domains and
operator sets have been conducted [16]. All of these works are restricted to conjunctive predicates.

Predicate indexing, as opposed to indexing data, has been an active research area, especially in the
domains of active databases [30] and publish&subscribe systems like Le Subscribe [13] and MDV [21].
Two index structures that have been proposed for predicate indexing in active databases are the IBS-
tree [18] and interval skip lists [19]. These are 1-dimensional index structures for indexing a set of in-
dependent intervals on one attribute. Another approach for indexing a set of independent 1-dimensional
intervals are virtual construct intervals (VCIs) [32]. There also exists a 2-dimensional variant, the virtual
construct rectangles (VCRs) [31], for indexing a set of independent 2-dimensional intervals. In contrast,
we propose using a multi-dimensional index structure for indexing a set of multi-dimensional conjunc-
tive predicates that are all part of the same disjunctive predicate. Multi-dimensional predicate indexing
for event filtering in publish&subscribe systems has also been studied using the UB-tree as an index
structure [29]. The approach accordingly transforms the dimensions using a space filling curve to map
the multi-dimensional universe to one dimensional space. Further, index support for the evaluation of
queries over data sets containing interval-valued attributes has also been examined [12].

There are only few works on predicate handling for disjunctive predicates in the database field. They
deal with the efficient evaluation of disjunctive predicates by merging disjuncts [24] or by using a special
form of relational algebra translation [4]. Other work focusses on bypassing the evaluation of expensive
predicate terms if possible [9] and on union pushdown techniques [6] to optimize the processing of dis-
junctive predicates. Work on optimizing query evaluation by appropriately moving expensive predicates
in the query plan has also considered disjunctive predicates [20].

7.2 Multi-Dimensional Indexing

Multi-dimensional indexing has originally been motivated by the needs of spatial databases. One of the
most well known spatial index structures is the R-tree [17]. It uses minimum bounding boxes to index
spatial objects and stores multi-dimensional rectangles, such as our conjunctive subpredicates, without

38

any further transformation or clipping. The R*-tree [3] is an advanced version of the R-tree aiming at
improved performance by reducing the area, margin, and overlap of the rectangles stored in the index.
These goals are achieved by a modified insertion strategy that uses a forced reinsert policy. To completely
eliminate any overlap between regions, which is known to be responsible for performance degradation
in an R-tree due to the necessity to traverse all paths covering or intersecting the searched data point or
region during a search, the R+-tree was developed [26]. It uses clipping to distribute non-overlapping
parts of rectangles over different index regions. While the problem of overlapping regions is thus avoided,
the clipping approach may lead to a high fragmentation of indexed regions. The TV-tree [23] indexes
high-dimensional data by dynamically choosing an appropriate subset of dimensions for indexing on
each index level. An extensive survey on multi-dimensional access methods including a classification
and comparative studies has also been published [15].

7.3 Data Stream Management

In the domain of data stream management systems, which is the main—albeit not the only possible—
application scenario that we target with our predicate matching and evaluation approaches, various sys-
tems have been proposed in recent years. STREAM [1] processes data streams using the continuous
query language (CQL) [2] by transforming them into relations and the query results back into streams
again. TelegraphCQ [5] adaptively processes data streams using, among other things, the Eddy approach
for adaptive tuple routing. NiagaraCQ [7] optimizes query processing by sharing common computa-
tions among continuous queries. This is achieved by appropriately grouping queries according to similar
structures. In the field of XML data streams, ONYX [11] has been proposed as a scalable system for
content-based data dissemination in large-scale networks. Aurora is basically a centralized data flow
system that processes tuple streams. A decentralized version of Aurora is Aurora*. Finally, Medusa is
a distributed infrastructure that supports federated operation of nodes [8]. PIPES [22] is a public infras-
tructure for processing and exploring data streams. The needs of high fan-in systems are being addressed
in the HiFi [14] system. The Cougar [33] approach deals with in-network query processing in sensor
networks.

8 Conclusion

In this paper, we have presented various methods for matching and evaluating interval-based disjunctive
predicates. Matching involves deciding whether a predicate implies another and, if this is not the case,
how the other predicate can be altered in order for the implication to be valid. We have concentrated on
disjunctive predicates consisting of conjunctive subpredicates that form multi-dimensional hyperrectan-
gles with edges parallel to the coordinate axes in the data space. The approach can also be used as an
approximation for more complex shaped predicates, which affords non-trivial post-processing that we do
not elaborate on in this paper. We have introduced two heuristics that can be executed efficiently but ei-
ther cause the number of subpredicates of a disjunctive predicate to increase or deliver only approximate
results. An exact solution that is applicable for small input sizes, i. e., small numbers of dimensions and
subpredicates, has also been shown. Achieving high throughput during predicate evaluation is a major
goal in most application scenarios. We therefore have further dealt with the evaluation of disjunctive
predicates and examined the use of multi-dimensional indexing for speeding up predicate matching and
evaluation. To the best of our knowledge, this is the first work to examine the use of multi-dimensional
indexes for matching and continuously evaluating disjunctive predicates. All algorithms have been im-
plemented and evaluated in a comparative experimental study asserting the effectiveness of the index-
based approach which yields a performance gain of up to several orders of magnitude compared to the
solution without indexing.

39

There are numerous opportunities for future work. First, the applicability and efficiency of other
multi-dimensional index structures in the context of predicate matching and evaluation could be exam-
ined. Second, we think about implementing a specialized index structure that is based on existing index
techniques but especially fits the needs of indexing disjunctive predicates. In this course, the functionality
of predicate matching could be fully or partially incorporated into the index itself.

References

[1] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani, I. Nishizawa, U. Srivastava,
D. Thomas, R. Varma, and J. Widom. STREAM: The Stanford Stream Data Manager. IEEE
Data Engineering Bulletin, 26(1):19–26, Mar. 2003.

[2] A. Arasu, S. Babu, and J. Widom. CQL: A Language for Continuous Queries over Streams and
Relations. In Proc. of the Intl. Workshop on Database Programming Languages, pages 1–19,
Potsdam, Germany, Sept. 2003.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An Efficient and Robust
Access Method for Points and Rectangles. In Proc. of the ACM SIGMOD Intl. Conf. on Manage-
ment of Data, pages 322–331, Atlantic City, NJ, USA, May 1990.

[4] F. Bry. Towards an Efficient Evaluation of General Queries: Quantifier and Disjunction Processing
Revisited. In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pages 193–204,
Portland, OR, USA, May 1989.

[5] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S. Kr-
ishnamurthy, S. Madden, V. Raman, F. Reiss, and M. A. Shah. TelegraphCQ: Continuous Dataflow
Processing for an Uncertain World. In Proc. of the Conf. on Innovative Data Systems Research,
Asilomar, CA, USA, Jan. 2003.

[6] J.-Y. Chang and S.-G. Lee. An Optimization of Disjunctive Queries: Union-Pushdown. In Proc. of
the Intl. Computer Software and Applications Conf., pages 356–361, Washington, DC, USA, Aug.
1997.

[7] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A Scalable Continuous Query System
for Internet Databases. In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pages
379–390, Dallas, TX, USA, May 2000.

[8] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel, Y. Xing, and S. B.
Zdonik. Scalable Distributed Stream Processing. In Proc. of the Conf. on Innovative Data Systems
Research, Asilomar, CA, USA, Jan. 2003.

[9] J. Claussen, A. Kemper, G. Moerkotte, K. Peithner, and M. Steinbrunn. Optimization and Evalu-
ation of Disjunctive Queries. IEEE Trans. on Knowledge and Data Engineering, 12(2):238–260,
Mar. 2000.

[10] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava, and M. Tan. Semantic Data Caching and
Replacement. In Proc. of the Intl. Conf. on Very Large Data Bases, pages 330–341, Mumbai
(Bombay), India, Sept. 1996.

[11] Y. Diao, S. Rizvi, and M. J. Franklin. Towards an Internet-Scale XML Dissemination Service. In
Proc. of the Intl. Conf. on Very Large Data Bases, pages 612–623, Toronto, Canada, Aug. 2004.

40

[12] J. Enderle, N. Schneider, and T. Seidl. Efficiently Processing Queries on Interval-and-Value Tuples
in Relational Databases. In Proc. of the Intl. Conf. on Very Large Data Bases, pages 385–396,
Trondheim, Norway, Aug. 2005.

[13] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha. Filtering Algorithms
and Implementation for Very Fast Publish/Subscribe Systems. In Proc. of the ACM SIGMOD Intl.
Conf. on Management of Data, pages 115–126, Santa Barbara, CA, USA, May 2001.

[14] M. J. Franklin, S. R. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi, E. Wu, O. Cooper, A. Edakkunni,
and W. Hong. Design Considerations for High Fan-in Systems: The HiFi Approach. In Proc. of
the Conf. on Innovative Data Systems Research, pages 290–304, Asilomar, CA, USA, Jan. 2005.

[15] V. Gaede and O. Günther. Multidimensional Access Methods. ACM Computing Surveys,
30(2):170–231, June 1998.

[16] S. Guo, W. Sun, and M. A. Weiss. Solving Satisfiability and Implication Problems in Database
Systems. ACM Trans. on Database Systems, 21(2):270–293, June 1996.

[17] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In Proc. of the ACM
SIGMOD Intl. Conf. on Management of Data, pages 47–57, Boston, MA, USA, June 1984.

[18] E. N. Hanson, M. Chaabouni, C.-H. Kim, and Y.-W. Wang. A Predicate Matching Algorithm for
Database Rule Systems. In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pages
271–280, Atlantic City, NJ, USA, May 1990.

[19] E. N. Hanson and T. Johnson. Selection Predicate Indexing for Active Databases Using Interval
Skip Lists. Information Systems, 21(3):269–298, May 1996.

[20] J. M. Hellerstein and M. Stonebraker. Predicate Migration: Optimizing Queries with Expensive
Predicates. In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pages 267–276,
Washington, D.C., USA, May 1993.

[21] M. Keidl, A. Kreutz, A. Kemper, and D. Kossmann. A Publish & Subscribe Architecture for
Distributed Metadata Management. In Proc. of the IEEE Intl. Conf. on Data Engineering, pages
309–320, San José, CA, USA, Feb. 2002.

[22] J. Krämer and B. Seeger. PIPES - A Public Infrastructure for Processing and Exploring Streams.
In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pages 925–926, Paris, France,
June 2004.

[23] K.-I. Lin, H. V. Jagadish, and C. Faloutsos. The TV-tree – an index structure for high-dimensional
data. The VLDB Journal, 3(4):517–542, Oct. 1994.

[24] M. Muralikrishna and D. J. DeWitt. Optimization of Multiple-Relation Multiple-Disjunct Queries.
In Proc. of the ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages
263–275, Austin, TX, USA, Mar. 1988.

[25] D. J. Rosenkrantz and H. B. Hunt. Processing Conjunctive Predicates and Queries. In Proc. of the
Intl. Conf. on Very Large Data Bases, pages 64–72, Montreal, Canada, Oct. 1980.

[26] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-Tree: A Dynamic Index for Multi-
Dimensional Objects. In Proc. of the Intl. Conf. on Very Large Data Bases, pages 507–518,
Brighton, England, Sept. 1987.

41

[27] X.-H. Sun, N. Kamel, and L. M. Ni. Solving Implication Problems in Database Applications. In
Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pages 185–192, Portland, OR,
USA, May 1989.

[28] J. van der Bercken, B. Blohsfeld, J.-P. Dittrich, J. Krämer, T. Schäfer, M. Schneider, and B. Seeger.
XXL – A Library Approach to Supporting Efficient Implementations of Advanced Database
Queries. In Proc. of the Intl. Conf. on Very Large Data Bases, pages 39–48, Roma, Italy, Sept.
2001.

[29] B. Wang, W. Zhang, and M. Kitsuregawa. UB-tree Based Efficient Predicate Index with Dimension
Transform for Pub/Sub System. In Proc. of the Intl. Conf. on Database Systems for Advanced
Applications, pages 63–74, Jeju Island, Korea, Mar. 2004.

[30] J. Widom and S. Ceri, editors. Active Database Systems – Triggers and Rules for Advanced
Database Processing. Morgan Kaufmann Publishers, 1995.

[31] K.-L. Wu, S.-K. Chen, and P. S. Yu. VCR Indexing for Fast Event Matching for Highly-Overlapping
Range Predicates. In ACM Symp. on Applied Computing, pages 740–747, Nicosia, Cyprus, Mar.
2004.

[32] K.-L. Wu, S.-K. Chen, P. S. Yu, and M. Mei. Efficient Interval Indexing for Content-Based Sub-
scription E-Commerce and E-Service. In Proc. of the IEEE Intl. Conf. on E-Commerce Technology
for Dynamic E-Business, pages 22–29, Beijing, China, Sept. 2004.

[33] Y. Yao and J. Gehrke. The Cougar Approach to In-Network Query Processing in Sensor Networks.
ACM SIGMOD Record, 31(3):9–18, Sept. 2002.

42

A Predicate Matching and Evaluation Algorithms

All algorithms assume that each stream predicate p and each query predicate p′ contains at least one
conjunctive subpredicate c and c′, respectively. Extensions for the handling of special cases like empty
predicates and predicates that constitute tautologies or contradictions are straightforward but would clut-
ter the algorithm presentations. It is also possible to deal with these special cases beforehand. In our
DSMS scenario, these cases are handled within the data stream sharing optimizer.

A.1 Quick Check (QC)

Algorithm 6 Quick Check (QC)
Input: Stream predicate p and a conjunctive subpredicate c′ of query predicate p′.
Output: 1, if c′ ⇒ c for at least one conjunctive subpredicate c in p; 0, if c′ overlaps with at least one

conjunctive subpredicate c in p, −1 if c′ does not overlap with any conjunctive subpredicate c in p,
otherwise.

1: overlap←−1;
2: for all conjunctive subpredicates c in p do
3: if c′ ⇒ c then
4: return 1;
5: end if
6: if c′ overlaps with c then
7: overlap← 0;
8: end if
9: end for

10: return overlap;

A.2 Heuristics with Simple Relaxation (HSR)

Algorithm 7 Heuristics with Simple Relaxation (HSR)
Input: Stream predicate p and query predicate p′.
Output: (true, p), if the quick check of Section 3.2 is activated and, for all conjunctive subpredicates c′

in p′, c′ ⇒ c for at least one conjunctive subpredicate c in p; (false, p̄), where p̄ is a relaxed version
of p such that the above condition is satisfied, otherwise.

1: match← true;
2: for all conjunctive subpredicates c′ in p′ do
3: if quick check is activated ∧ QC(p,c′) = 1 then
4: continue;
5: else
6: match← false;
7: disjunctively add c′ to p;
8: end if
9: end for

10: return (match, p);

43

A.3 Heuristics with Complex Relaxation (HCR)

f≥0(x) :=

{
0, x < 0

x, x≥ 0

44

Algorithm 8 Heuristics with Complex Relaxation (HCR)
Input: Stream predicate p and query predicate p′.
Output: (true, p), if, for all conjunctive subpredicates c′ in p′, c′ ⇒ c for at least one conjunctive sub-

predicate c in p; (false, p̄), where p̄ is a relaxed version of p such that the above condition is satisfied,
otherwise.

1: match← true;
2: for all conjunctive subpredicates c′ in p′ do
3: if quick check is activated ∧ QC(p,c′) = 1 then
4: continue;
5: else
6: ib←+∞; eb←+∞; cb← null; corig← null; m← true;
7: for all conjunctive subpredicates c in p do
8: i← 2(|D|− |Dc|); e← 0; cc← c; m← true;
9: for all pairs of corresponding dimensions d,d′ in cc,c′ with d = d′ do

10: if (lowerBound(Id) =−∞)∨ (lowerBound(Id′ =−∞) then
11: i← i+ 1;
12: end if
13: if (upperBound(Id) = +∞)∨ (upperBound(Id′ = +∞) then
14: i← i+ 1;
15: end if
16: if Id ∩ Id′ �= Id′ then
17: m← false;
18: a← f≥0(lowerBound(Id)− lowerBound(Id′))+
19: f≥0(upperBound(Id′)−upperBound(Id));
20: v← ∏

d∗∈D:((d∗ �=d)∧(0<Id∗<+∞))
Id∗ ;

21: e← e+(a · v);
22: replace Id in cc with Idc := [min(lowerBound(Id), lowerBound(Id′)),
23: max(upperBound(Id),upperBound(Id′))];
24: end if
25: end for
26: if m = true then
27: break;
28: else if (i < ib)∨ ((i = ib)∧ (e < eb)) then
29: ib← i; eb← e; cb← cc; corig← c;
30: end if
31: end for
32: if m = false then
33: match← false;
34: replace corig in p with cb;
35: end if
36: end if
37: end for
38: return (match, p);

45

A.4 Exact Matching (EM)

Algorithm 9 Compare Dimensions (CD)
Input: Conjunctive stream subpredicate c and conjunctive query subpredicate c′c.
Output: Queue Q′c of unmatched parts of query subpredicate c′c.

1: Q′c← /0; c′orig← c′c;
2: for all pairs of corresponding dimensions d,d′ in c,c′c with d = d′ do
3: if Id ∩ Id′ = /0 then
4: Q′c← /0; enqueue(Q′c,c′orig); break;
5: else if Id ∩ Id′ = Id′ then
6: continue;
7: else if Id ∩ Id′ = Id then
8: divide c′c along dimension d′ into the part c′i that is
9: overlapping with c in dimension d′ and the remaining parts c′o1 and c′o2;

10: enqueue(Q′c,c′o1); enqueue(Q′c,c′o2); c′c← c′i;
11: else
12: /* Id and Id′ overlap */
13: divide c′c along dimension d′ into the part c′i that is
14: overlapping with c in dimension d′ and the remaining part c′o;
15: enqueue(Q′c,c′o); c′c← c′i;
16: end if
17: end for
18: return Q′c;

46

Algorithm 10 Exact Matching with Breadth-First Split Strategy (EM-BFS)
Input: Stream predicate p and query predicate p′.
Output: (true, p), if p′ ⇒ p; (false, p̄), where p̄ is a relaxed version of p such that p′ ⇒ p̄, otherwise.

1: match← true;
2: for all conjunctive subpredicates c′ in p′ do
3: if quick check is activated ∧ QC(p,c′) = 1 then
4: continue;
5: else if quick check is activated ∧ QC(p,c′) =−1 then
6: disjunctively add c′ to p;
7: continue;
8: else
9: /* quick check is deactivated or returns 0 */

10: Q′1← /0; Q′2← /0; enqeue(Q′1,c
′);

11: for all conjunctive subpredicates c in p do
12: Q′2← Q′1; Q′1← /0;
13: while Q′2 �= /0 do
14: c′c← deqeue(Q′2);
15: /* compare dimensions using Algorithm 9 */
16: Q′c←CD(c,c′c);
17: append(Q′1,Q

′
c);

18: end while
19: if Q′1 = /0 then
20: break;
21: end if
22: end for
23: if Q′1 �= /0 then
24: match← false;
25: disjunctively add c′ to p;
26: end if
27: end if
28: end for
29: return (match, p);

47

Algorithm 11 Exact Matching with Depth-First Split Strategy (EM-DFS)
Input: Stream predicate p and query predicate p′.
Output: (true, p), if p′ ⇒ p; (false, p̄), where p̄ is a relaxed version of p such that p′ ⇒ p̄, otherwise.

1: match← true;
2: for all conjunctive subpredicates c′ in p′ do
3: if quick check is activated ∧ QC(p,c′) = 1 then
4: continue;
5: else if quick check is activated ∧ QC(p,c′) =−1 then
6: disjunctively add c′ to p;
7: continue;
8: else
9: /* quick check is deactivated or returns 0 */

10: QLIFO← /0; Qi← /0; Qp← /0; enqeue(Qi,c′); enqeue(QLIFO,Qi); enqeue(Qp, p);
11: while QLIFO �= /0 do
12: Qn← deqeue(QLIFO); c′c← deqeue(Qn); p− ← deqeue(Qp);
13: if Qn �= /0 then
14: enqeue(QLIFO,Qn); enqeue(Qp, p−);
15: end if
16: let c be the first conjunctive subpredicate in p−; remove c from p−;
17: /* compare dimensions using Algorithm 9 */
18: Q′c←CD(c,c′c);
19: if Q′c �= /0 then
20: if p− is not the empty predicate then
21: enqeue(QLIFO,Q′c); enqeue(Qp, p−);
22: else
23: match← false;
24: disjunctively add c′ to p;
25: break;
26: end if
27: end if
28: end while
29: end if
30: end for
31: return (match, p);

48

Algorithm 12 Exact Matching with Mixed Split Strategy (EM-MIX)
Input: Stream predicate p and query predicate p′.
Output: (true, p), if p′ ⇒ p; (false, p̄), where p̄ is a relaxed version of p such that p′ ⇒ p̄, otherwise.

1: match← true;
2: for all conjunctive subpredicates c′ in p′ do
3: if quick check is activated ∧ QC(p,c′) = 1 then
4: continue;
5: else if quick check is activated ∧ QC(p,c′) =−1 then
6: disjunctively add c′ to p;
7: continue;
8: else
9: /* quick check is deactivated or returns 0 */

10: QLIFO← /0; Qi← /0; Qp← /0; enqeue(Qi,c′); enqeue(QLIFO,Qi); enqeue(Qp, p); m← true;
11: while QLIFO �= /0 do
12: Qn← deqeue(QLIFO); p− ← deqeue(Qp);
13: let c be the first conjunctive subpredicate in p−; remove c from p−;
14: while Qn �= /0 do
15: c′c← deqeue(Qn);
16: /* compare dimensions using Algorithm 9 */
17: Q′c←CD(c,c′c);
18: if Q′c �= /0 then
19: if p− is not the empty predicate then
20: enqeue(QLIFO,Q′c); enqeue(Qp, p−);
21: else
22: m← false; match← false;
23: disjunctively add c′ to p;
24: break;
25: end if
26: end if
27: end while
28: if m = false then
29: break;
30: end if
31: end while
32: end if
33: end for
34: return (match, p);

49

A.5 Standard Evaluation (SE)

Algorithm 13 Standard Evaluation (SE)
Input: Predicate p and data item i.
Output: true, if i satisfies p; false, otherwise.

1: for all conjunctive subpredicates c in p do
2: match← true;
3: for all pairs of corresponding dimensions dc,di in c, i with dc = di do
4: if the value for di in i lies outside the interval defined for dc in c then
5: match← false;
6: break;
7: end if
8: end for
9: if match = true then

10: return true;
11: end if
12: end for
13: return false;

50

	1 Introduction
	2 Preliminaries
	2.1 Predicates
	2.2 Predicate Matching
	2.3 Predicate Evaluation
	2.4 Notation

	3 Predicate Matching
	3.1 Example
	3.2 Quick Check
	3.3 Heuristics with Simple Relaxation
	3.4 Heuristics with Complex Relaxation
	3.5 Exact Matching
	3.6 Multi-Dimensional Indexing

	4 Predicate Evaluation
	4.1 Standard Evaluation
	4.2 Index-based Evaluation

	5 Complexity Analysis
	5.1 Prerequisites
	5.2 Quick Check (QC)
	5.2.1 Time Complexity
	5.2.2 Space Complexity
	5.2.3 Summary

	5.3 Heuristics with Simple Relaxation (HSR)
	5.3.1 Time Complexity
	5.3.2 Space Complexity
	5.3.3 Summary

	5.4 Heuristics with Complex Relaxation (HCR)
	5.4.1 Time Complexity
	5.4.2 Space Complexity
	5.4.3 Summary

	5.5 Exact Matching (EM)
	5.5.1 Time Complexity
	5.5.2 Space Complexity
	5.5.3 Summary

	5.6 Standard Evaluation (SE)
	5.6.1 Time Complexity
	5.6.2 Space Complexity
	5.6.3 Summary

	5.7 Index-based Evaluation (IE)
	5.8 Summary

	6 Benchmarks
	6.1 Implementation and Setting
	6.2 Predicate Matching
	6.3 Predicate Evaluation

	7 Related Work
	7.1 Predicate Handling
	7.2 Multi-Dimensional Indexing
	7.3 Data Stream Management

	8 Conclusion
	References
	Appendix
	A Predicate Matching and Evaluation Algorithms
	A.1 Quick Check (QC)
	A.2 Heuristics with Simple Relaxation (HSR)
	A.3 Heuristics with Complex Relaxation (HCR)
	A.4 Exact Matching (EM)
	A.5 Standard Evaluation (SE)

