
	

1	
	

C-chain:		a	system	for	managing	public	
and	private	ledgers,	an	alternative	to	
blockchain	
Prof.	Rudolf	Bayer,	TU	München		Sept.	2017	

Summary	
Blockchain	experiences	a	hype	to	manage	public	ledgers	like	for	the	crypto	
currency	bitcoin.	But	blockchain	has	a	number	of	very	serious	drawbacks	like		

• no	scalability,		
• bad	public	image,		
• terrible	ecological	footprint,		
• no	final	settlement,		
• high	cost	of	transactions,		
• splits	of	the	community.		

For	details	see	[4].	Therefore,	the	blockchain	technology	is	highly	
questionable.		

This	paper	presents	the	C-chain	system	as	an	alternative	to	blockchain.		 						
C-chain	integrates	cryptographic	techniques	and	database	techniques	in	a	
novel	way	in	order	to	manage	contracts	via	public	ledgers	in	a	cryptographically	
certified,	secure,	immutable	and	durable	way.	C-chain	avoids	the	pitfalls	of	
blockchains	and	has	additional	substantial	advantages.		

The	techniques	integrated	in	C-chain	from	cryptography	are		

1. public	private	key	pairs	for	encryption	and	decryption		
2. cryptographic	signatures.			

The	techniques	from	databases	are		

1. ACID	transactions	
2. Serialization	
3. Integrity	constraints	

	

2	
	

C-chain	guarantees	security	and	durability	both	for	the	content	of	contracts	as	
well	as	for	the	bookkeeping	of	contracts	in	chains	of	transactions.	

Basic	Concepts	
Laws	of	public	cryptpgraphy	

	key	pairs	[π , σ]	 	 	 for	Owner	U	denoted	by:	[πU	, σU]	

A	key	pair	[π 	,σ]	consists	of	the	public	key	π 	and	of	the	private	key	σ .		

π 	is	public	and	can	be	stored	in	a	public	key	database	UDB	(User	Data	Base),	
optionally	together	with	additional	information.	Everybody	may	see	π 		and	

query	and	read	UDB.	The	owner	U	of	πU		may	remain	anonymous	or	reveal,	
who	U	is	as	a	person	or	as	an	organization	(authentication)	or	even	as	a	
machine	like	a	socalled	IoT	device	in	the	Internet	of	Things	(IoT).

σ must	be	kept	secret	by	the	owner	and	should	be	copied	into	a	safe	place	
against	loss.	

Encryption	and	decryption	

Encryption	of	public	documents	

Let	d	be	an	arbitrary	document,	e.g.	the	text	of	a	contract	or	a	video.		

d	is	encrypted	and	signed	using	the	private	key	σ 	to	compute	σ(d).	The	

encrypted	version	σ(d)	of	d	can	be	decrypted	again	by	using	the	corresponding	
public	key	π 	and	computing	π(σ(d)).	This	reflects	the	first	basic	mathematical	

law	of	public	cryptography: π(σ(d))		=	 d			

This	law	will	be	used	later	for	encrypting	and	digitally	signing	a	document.	For	
efficiency,	C-chain	uses	a	slightly	different	version.	

Encryption	of	secret	documents	

The	second	basic	mathematical	law	of	public	cryptography	is	the	reverse	of	the	
first: σ(π(d))		=		d			This	law	is	used	for	encrypting	a	document	in	order	to	hide	

its	content. 		

If	d	has	been	encrypted	with	the	public	key	π 	of	O	resulting	in	π(d),	it	can		only	

be	decrypted	and	read	by	the	owner	of	σ . Therefore,	if	π(d)	is	somehow	

	

3	
	

obtained	by	anybody,	e.g.	a	user	W	or	even	a	hacker	H	by	intercepting	a	
message	containing	π(d),	this	is	completely	useless,	since	he	cannot	decrypt	it.	

Both	laws	together	are	the	basic	laws	of	public	cryptography:		 	
	 	 	 π(σ(d))		=	 d		=		σ(π(d))	

Digital	Signature	

A	document	d	together	with	the	encrypted	version	σ(d)		denoted	as	[d,	σ(d)]	
are	a	mathematical	proof	that	d	has	not	been	changed,	if	the	following	
property	holds:			π(σ(d))	=		d		

Since	σ 	is	secret,	only	the	owner	O	of	σ 	can	produce	σ(d)	with	the	property	

that	π(σ(d))	=	d.	Therefore	we	use	σ(d)	also	as	the	digital	signature	of	O,	
proving	mathematically,	that	O	has	signed	the	document	d	and	thereby	
certifies	the	correctness	of	d.		

Therefore,	anybody	who	knows	the	public	key	π ,	the	document	d	and	σ(d)	can	
verify	that	d	has	not	been	changed	(immutability	of	d).		

Note	that	σ(d)	has	three	entirely	different	aspects:	

1. Encryption:	σ(d)	is	encrypted	
2. Immutability:	if	π(σ(d))	=	d	then	d	has	not	been	changed		

3. σ(d)	has	been	digitally	signed	by	the	owner	of	σ.	

Such	a	digital	signature	has	the	following	fundamental	properties:	

1. a	digital	signature	can	never	be	denied	by	the	owner	O	of	σ 	
2. a	digital	signature	can	never	be	revoked	by	O		
3. a	digital	signature	cannot	be	forged	

Summarizing	the	basic	laws	of	public	cryptography:	

	 σ(π(d))		=	 	d			=			π(σ(d))			

σ(d)	 is	used	in	C-chain	as	a	(public)	digital	signature	

π(d)		 is	used	in	C-chain	for	communicating	a	document	secretly	

Digital	signatures	with	a	hash	function	

	

4	
	

A	hash	function	h	is	a	one-way	mathematical	function.	h(d)	can	be	computed	
easily,	but	it	can	be	made	arbitrarily	difficult	to	compute	its	inverse	h-1(d).	In			
C-chain	hash	functions	are	chosen	in	such	a	way,	that	collisions	are	extremely	
unlikely.	

The	digital	Identity	cryptID				

A	digital	identity	cryptID	is	the	pair	[π , σ(h(π))].	For	a	particular	user	U		his	

cryptID	is	denoted	by	[πU, σU(h(πU))]	

The	cryptID	of	U	can	easily	be	generated	by	a	device	of	U	and	checked	by	
another	user	V.	Therefore,	we	use	the	cryptID	for	opening	a	communication	
channel	with	an	arbitrary	partner,	e.g.	with	another	person,	a	WEB-service	or	
an	arbitrary	computer	server.		

Login	to	Computers	

Now	U	may	use	his	cryptID	and	an	automaticallly	generated	and	signed	PDW	to	
log	into	computers,	servers	or	WEB-services	as	follows:		

1. The	cryptID	[πU, σU(h(πU))]	is	used	as	the	login	name	

2. U	uses	a	signed	random	string	r	as	the	PWD		[r,	σU(r)]		
3. U	now	logs	in	with	the	pairs	[[πU, σU(h(πU))]	,	[r,	σU(r)]]	

4. This	can	even	be	simplified	to	log	in	with	[πU, 	[r,	σU(r)]]	

Since	r	is	signed	by	U,	nobody	except	U	could	have	produced	the	PWD		 						
[r,	 σU(r)].	Therefore,	the	server	or	WEB-service	has	proof,	that	this	PWD	is	
from	U.	This	simplifies	the	conventional	login	process	dramatically	and	at	the	
same	time	makes	it	much	more	secure,	since	U	does	not	have	to	remember	or	
to	type	anything,	therefore	a	key	logging	malware	is	no	danger.	

Login	with	single	use	Passwords	

Since	a	signed	PWD	can	be	generated	in	less	than	a	millisecond,	a	new	PWD	
can	be	used	for	every	login.	This	results		in	passwords,	which	are	used	only	
once	and	would	be	much	more	secure	than	conventional	login	techniques	
today.	Even	if	a	PWD	should	be	stolen	by	a	man	in	the	middle	attack,	somebody	
else	might	be	able	to	log	into	a	system,	but	for	further	actions	the	hacker		
would	need	the	private	key,	which	he	cannot	obtain.	 	

	

5	
	

The	communication	between	a	User	U	and	a	server	is,	of	course,	secured	by	
https.	In	addition,	a	PWD	can	be	made	to	be	valid	only	for	a	short	time,	leaving	
almost	no	chance	for	a	man	in	the	middle	attack	.	

Certificates		

Foreign	certificates		

A	foreign	certificate	is	a	signature	that	two	entities	A	and	B	belong	together.	
The	entities	A	and	B	could	be	a	person's	legal	name	or	email	address	and	the	
person's	public	key.	So	σU([A,	B]) 	is	a	certificate	issued	by	user	U	himself.	By	
his	digital	signature	U	certifies	publicly	that	A	and	B	belong	together.	But	such	a	
certificate	is	nothing	but	a	claim	signed	by	U,	and	often	such	claims	are	wrong.	
Foreign	certificates	are	the	standard	use	of	certificates.	

Self	certificate	σV([V, πv]) By	this	V	certifies	himself	with	his	own	signature	

σV	that	V	and	πv	belong	together.	We	used	the	selfcertificate	 σU(h(πU)) in	

the	cryptID	of	U	to	prove	that	 πU	ist	the	public	key,	that	belongs	to	σU.	This	is	
much	more	than	just	a	claim!	

Biometric	digital	certificate	for	authentication	

Authentication	is	the	certification	that	certain	claims	are	true,	for	example	that	
a	picture	was	painted	by	Picasso.	For	works	of	art	authentication	is	certified	by	
an	expertise	and	certificates	are	guaranteed	by	art	experts.	But	such	an	
expertise	is	not	absolutely	certain,	it	is	only	a	claim!	For	digital	objects	we	
assert	authentication	by	digital	signatures	and	also	call	them	certificates.	

In	the	C-chain	system	we	use	the	cryptID	combined	with	biometric	
authentication	to	certify	that	a	person	is	the	owner	of	a	public	key.		For	this,	U	
records	a	video	in	which	he	reads	the	hash	h(πU) of	his	own	public	key.	This	

video	is	then	signed	and	published	in	the	UDB	together	with	 πU	and	h(πU),	
everybody	may	see	and	check		it.	UDB	may	contain	additional	optional	
information	about	U.	

	

	

	

	

6	
	

Users	of	the	C-chain	system		

We	distinguish	between	the	following	different	types	of	users:		

Normal	users	denoted	by	U,	V,	W.	They	will	try	to	cheat	if	it	is	to	their	
advantage	and	the	danger	of	discovery	is	low,	e.g.	to	double	spend	money.	But	
C-chain	will	prevent	that	they	are	successful	in	cheating.	

Trusted	Users	denoted	by	B,	C,	D.	They	are	honest	and	try	to	follow	accepted	
business	rules.	They	are	typically	honest,	because	it	is	in	the	best	interest	of	
their	business,	to	have	a	good	reputation		and	to	be	trusted.	If	e.g.	a	pizza	
service	does	not	deliver	the	pizzas	exactly	as	ordered,	a	customer	will	not	order	
again.		

Hackers	denoted	by	H:	We	will	see	that	hackers	have	no	chance	to	attack	a	C-
chain	System.	

Transactions	

Business	processes	in	the	simplest	case	consist	of	a	sequence	of	several	
isolated	and	closed	transactions,	e.g.	if	U	buys	a	product	P	from	a	vendor	V	and	
pays	via	his	bank	B,	this	business	process	consists	of	the	following	transactions:	

1. U	orders	P	from	V	
2. V	acknowledges	the	sale	
3. V	sends	P	to	U	
4. V	sends	the	bill	to	U	
5. U	orders	his	bank	B	to	pay	
6. B	makes	the	payment	to	V	

All	transactions	in	a	business	process	are	combined	by	C-chain	into	a	strict	
sequence	of	transactions	and	booked	as	a	transaction	chain	TC.	

Format	of	a	transaction	

A	user	U	formulates	a	transaction	T	containing	data	d	and	signs	it	as	follows:		

[d	,	σU	(h(d))]	containing	d	as	open	data	and	the	signature	of	the	hash	of	
d	to	assert	that	d	has	not	been	modified.	U	is	responsible	that	the	
content	d	is	correct	and	follows	the	rules		of	the	business	involved.	

	

7	
	

Messages	

Public	messages	M	

U	sends	a	message	M	to	V	containing	the	transaction	T	in		the	format:			
	 	 	 M	=	[πU,	πV,	[d	,	σU	(h(d))]]	

Everybody	who	sees	this	message	can	check,	whether	d	has	been	modified	or	
not.	This	property	is	called	immutability.	

Secret	messages	SM	

U	sends	a	secret	message	SM	to	V	with	the	transaction	T	in	the	format:			
	 	 SM	=		[πU,	πV,	[πV	(d), σU	(h(d))]]		

Hiding	the	sender	of	a	message	HM	

This	is	easily	done	by	also	encrypting	the	sender	U	in	the	format			

HM	=	[πV(πU),	πV,	[πV	(d), σU	(h(d))]]	

For	efficiency	reasons,	C-chain	uses	a	different	method	for	encryption	
consisting	of	a	combination	of	asymmetric	and	symmetric	encryption.	

Rules	for	transactions	

Most	transactions	must	obey	certain	rules,	but	it	is	essential	to	clearly	
distinguish	between	rules	for	transactions	and	rules	for	the	bookkeeping	of	
transaction	chains.	For	the	above	sales	process	obviously	product	number,	
price,	account	number	of	V	etc.	must	be	correct.	The	author	U	of	a	transaction	
is	responsible	that	it	is	formulated	correctly.	Rules	are	enforced	by	U,	V	and	the	
SW	generating	transactions.	Often	such	rules		can	be	conveniently	formulated	
as	integrity	constraints	in	databases,	which	are	then	enforced	automatically	
by	the	DBMS.	

Management	of	transaction	chains	

Transaction	chains	TC	are	stored	in	databases	TDB	(Transaction	Data	Base).	The	
main	task		of	a	TDBMS	(Transaction	Data	Base	Management	System)	is	the	
proper	bookkeeping	of	transaction	chains.	Independent	of	the	properties	and	
the	correctness	of	the	individual	transactions,	the	TC	as	a	whole	must	have	the	

	

8	
	

following	properties,	for	which	one	or	several	replicated	TDBMS	are	
responsible:	

1. Only	transactions	certified	by	the	author	with	his	digital	signature	are	
acceptable	and	added	to	the	transaction	chain	

2. Once	a	transaction	has	been	booked	in	the	TC	it	must	be	immutable,	i.e.	
T	cannot	be	changed	after	it	has	been	booked,	not	even	by	its	author	

3. TC	as	a	whole	must	be	strict,	i.e.	a	T	once	booked	may	not	be	removed	
from	TC	and	its	position	within	TC	may	not	be	changed	

4. New	transactions	may	only	be	appended	to	the	end	of	a	chain	and	not	
inserted	in	between.	TDBMS	is	responsible	for	this.	In	the	context	of	
database	systems	this	property	is	usually	called	serialization,	but	in	C-
chain	this	classical	form	of	weak	serialization	is	enforced	by	unbreakable	
cryptographic	certification.	

5. TC	must	be	durable,	i.e.	TC	may	never	disappear	and		it	must	be	
accessible	at	all	times,	optionally	by	the	general	public,	by	closed	groups	
or	only	by	the	partners	of	a	business	transaction.	

6. The	booking	of	a	transaction	must	immediately	be	settled	finally	and	
forever.	If	for	whatever	reason	a	transaction	should	have	been	faulty,	it	
cannot	be	removed	from	TC,	it	can	only	be	compensated	by	another	
transaction	(like	in	proper	ledgers	of	bookkeeping),	e.g.	by	repaying	the	
money	for	a	faulty	product.	But	this	repayment	is	a	new	transaction	and	
the	original	payment	transaction	is	not	removed	from	TC.		

Comment:		

Serialization	is	guaranteed	by	the	TDBMS	in	C-chain,	even	if	two	transactions	T1	
and	T2	arrive	at	TDBMS	exactly	at	the	same	time.	In	such	a	case	the	transaction	
manager	of	TDBMS	decides	arbitrarily	to	book	T1	and	T2	in	some	order,	e.g.		
(T1	;	T2)	or	(T2;	T1).	The	booking	result	ist	not	deterministic,	but		it	must	be	
correct.	

	

	

	

	

	

9	
	

Protocol		of	TDBMS	

The	above	requirements	of	transaction	chains	are	guaranteed	by	TDBMS	by	
the	following	protocol,	if	U	wants	to	send	a	transaction	for	V:		

1. Before	TDBMS	appends	T	=	[d,	σU(h(d))] to	the	end	of	the	chain,	
TDBMS	checks	that	T	is	certified	by	U	by	computing	h(d)	and	compairing	
it	with	πU(σU(h(d))	?	

2. Certification	of	T	by	the	system	TDBMS	with	ist	own	private	key	σS:	
After	checking	the	proper	certification	by	U,	TDBMS	now	also	signs	T	as	
	 	 σS	(T)	=	[d,	σS(σU(h(d)))] 	

3. Now	TDBMS	appends	T	with	serial	number	n+1	to	the	end		of	the	chain	
TC.		If	the	last	T	in	TC		is	Tn	,	then	the	new	transaction	is	appended	to	TC	
as	follows:	

a. Read	Tn	from	the	end	of	TC	
b. Compute	h(Tn)	
c. Book	Tn+1	in	the	signed	form	[n+1,	σS(h(Tn))	,	σS(T)]	i.e.	store	this	

Tn+1	in	TDBMS.	σS(h(Tn))	as	part	of	Tn+1		makes	sure,	that	Tn+1	was	
appended	to	the	chain	bei	TDBMS		

4. The	transaction	chain	TC	stored	also	locally	by	U	is	synchronized,	so	that	
U	can	check	immediately,	that	his	transaction	was	properly	booked	

5. The	TC	stored	locally	by	V	is	synchronized	by	a	push	notification	of	
TDBMS	or	as	soon	as	V	switches	on	his	client	device.	

Note:	To	guard	against	modification	of	TC	even	further,	the	hash	of	some	
component	of	Tn+1	could	be	included	in	Tn	(resulting	in	a	forward	linking	of	TC).			

Creating	a	new	Chain:	of	course,	a	user	U	must	be	able	to	create	a	new	chain	
TC.	This	could	be	done	by	using	a	special	document	d	with	the	content	like	this:	
d	=	„this	chain	is	named	bank	account	of	U.	It	was	created	by	U	on	
<datetime>“.	This	record	could	have	the	special	format:					 	 	
	 [0,	0,	πU,	πS	,	[d,	σS(σU(h(d)))]]	

Also,	U	must	be	able	to	control,	which	other	users	may	interact	with	V.	This	is	
an	easy	exercise.	In	this	case,	V	is	the	recipient	of	T	and	decides	what	to	do	
with	T,	e.g.	to	act	accordingly,	to	reject	it	or	to	reply	in	some	other	manner.	But	
before	V	sees	and	acts,	T	must	be	properly	booked,	but	this	booking	process	

	

10	
	

has	nothing	to	do	with	the	content	of	T,	which	may	even	be	hidden	from	
TDBMS.	

Further	essential	properties	of	C-chain	

1. Digital	identities	cryptID	[π , σ(h(π))]		are	stored	in	a	public	database	
UDB	and	can	easily	be	found	and	verified	by	any	user	V.		

2. To	increase	security,	U	could	expand	his	pure	cryptID	optionally	by	a	
photo	or	video	for	authentication,	by	his	name,	email	address,	his	
company	name,	URL	of	his	social	media	presence,	telephone	number	
etc.	Of	course,	all	these	data	should	be	signed	by	U	for	additional	
security	

3. A	user	V	can	then	find	all	information	published	by	U	about	himself	by	
querying	the	UDB	and	downloading	it	immediately	onto	his	own	device.	
Thus,	it	is	sufficient	that	V	checks	the	cryptID	with	the	public	key	and/or	
authenticity	of	U	only	once	and	very	conveniently	

4. Perfect	scalability	
5. Very	fast	processing	
6. Immediate	final	settlement	

Visibility	and	Rules	for	Transactions	

The	rules	for	transactions	must	be	formulated,	obeyed	and	checked	by	various	
agents.	Every	transaction	type	has	its	own	rules.	For	this,	certain	parameters	
must	be	available	and	visible	for	the	agents	involved.	The	visibility	of	various	
components	of	a	transaction	can	be	easily	controlled	and	customized	by	proper	
encryption	for	authorized	agents.		

	

11	
	

	

References	

1. 	https://blockchain.info		
2. http://www.coindesk.com/understanding-dao-hack-journalists			
3. https://www.cnet.com/news/in-their-words-experts-weigh-in-on-mac-

vs-pc-security/				
4. R. Bayer, E. Loibl, C. Roth: Pitfalls of Blockchains,

http://www.transaction.de/C-chain/Pitfalls
5. R. Bayer: C-chain, http://www.transaction.de/C-chain/C-chain
6. R. Bayer, E. Loibl, C. Roth: C-chain Anwendungen,

http://www.transaction.de/C-chain/Applications
7. R. Bayer: Highlights of C-chain, http://www.transaction.de/C-

chain/Applications
8. https://bitcoin.org/bitcoin.pdf	
9. https://en.wikipedia.org/wiki/Satoshi_Nakamoto		
10. http://www.euroforum.de/best-of-blockchain/#	
11. https://digiconomist.net/bitcoin-energy-consumption		
12. http://www.wiwo.de/finanzen/geldanlage/studie-zum-zahlungsverkehr-

bargeld-ist-teurer-als-kartenzahlung/8232850.htm	
13. https://www.welt.de/finanzen/article116392426/So-viel-kostet-die-

Deutschen-ihr-Bargeld.html	
14. http://www.faz.net/aktuell/finanzen/meine-finanzen/geld-

ausgeben/dank-eu-voschrift-muenzen-kosten-mehr-als-ihr-wert-
13756893.html	

15. http://www.handelszeitung.ch/konjunktur/teure-scheine-was-uns-das-
bargeld-kostet-793411		

16. https://blockchain.info/de/charts	
17. https://de.wikipedia.org/wiki/Liste_der_leistungsstärksten_Kernreaktore

n#Europa		
18. C‘t	2017	Heft	23:	Das	macht	Blockchain,	S.	102-106	
19. C‘t	2017	Heft	23:	Vertrag	denkt	mit,	S.	108-112	
20. superMUC:	

https://www.lrz.de/services/compute/supermuc/systemdescription/		
21. https://paymentandbanking.com/die-disruptivste-zahlmethode/	

