
Model Checking Dataflow for Malicious Input

Ansgar Fehnker
∗

NICTA
University of New South Wales

Sydney, Australia
ansgar.fehnker@nicta.com.au

Ralf Huuck
∗

NICTA
University of New South Wales

Sydney, Australia
ralf.huuck@nicta.com.au

Wolf Rödiger
†

Department of Software Engineering
Augsburg University

Germany
wolf-steffen.roediger@student.uni-augsburg.de

ABSTRACT
Many embedded systems today are no longer isolated con-
trol units, but are fully fledged miniature desktops with their
own kernel and sometimes operating system networked with
the outside world. This opens up a whole new set of se-
curity issues previously not known to embedded systems.
One example is potentially malicious input that exploits
source code weaknesses leading to critical mission failures.
In this paper we propose a new automated malicious input
detection approach that works on a staged application of
traditional tainted dataflow analysis and syntactic software
model checking. The advantages of this approach are that
tainted data can be tracked from its source to its applica-
tion point, a precise path through the source code can be
computed, speed and precision can be custom-tuned by au-
tomated refinement, and the approach is flexible to deal with
real-life security threats. We illustrate our approach with a
number of analysis examples taken from existing open source
C/C++ projects.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model checking, Formal methods; D.4 [Operating
Systems]: Security and Protection

General Terms
Security, Verification

Keywords
Security, Model Checking, Static Analysis, Command Injec-
tion

∗NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program.
†This work was carried out while visiting the Systems Soft-
ware Research Group at NICTA, Sydney.

1. INTRODUCTION
The times where the typical embedded system was an iso-
lated unit for highly specialized purposes are gone. In fact,
it becomes more and more difficult to differentiate between
what used to be desktop capabilities from embedded sys-
tems features. Entertainment systems in cars, game con-
soles, phones, and TVs, to name a few, often contain a full
blown operating system and more application code than a
standard desktop computer not so many years ago.

To illustrate this by one example: A latest TV set contains
an operating system (often Linux variants), comes with soft-
ware applications totaling around 4 million lines of source
code, has Internet connection, and can be remotely con-
trolled through phone apps. Software is by far the largest
cost factor and this comes with all the advantages and dis-
advantages of modern software systems.

One of the threats to these types of embedded systems is se-
curity. While a TV set is rarely used for mission critical ap-
plications, other similar products such as phones, integrated
GPS solutions and remotely diagnosable embedded devices
are. Oftentimes, security considerations are not build in, but
build on top of existing systems. Either by access control,
(para-)virtualization or simple obscuration.

However, building large interconnected embedded systems
will always require exchange of data with different compo-
nents such as: Third party applications for communication
and interaction, new hardware components in a plug-and-
play fashion or end users who input and store data or con-
figure systems to their preferences.

Not surprisingly, command line injects of tainted data are
ranked among the Top 25 Most Dangerous Software Errors
listed by the SANS/MITRE organization1. With increased
interoperability there is an increased risk of unchecked in-
put exploiting security holes. This is in particular true when
embedded systems interact with third parties they were orig-
inally not designed for.

There are a number of testing and verification approaches
designed to catch or prevent these types of security flaws in-
cluding standard dynamic testing, run-time verification and
symbolic execution, penetration testing and formal verifica-
tion. Most of these techniques either give a low assurance
as they can only test certain parts or scenarios or are highly

1http://www.sans.org/top25-software-errors/

expensive in terms of run-time and human resources needed.
More lightweight verification techniques that can be used at
software development time, i.e., during the implementation
rather than after it, are often summarized under the term
static source code analysis [14]. Static analysis techniques
comprise a number of methods to automatically investigate
source code by building control and data dependencies, ap-
proximating the semantics, and tracking information across
functions.

In this paper we propose a new static tainted data analysis
that combines two different techniques: Traditional dataflow
analysis and model checking. Dataflow analysis [1] is used
as a program approximation to determine for every program
point which tainted data can reach that point. Typically,
dataflow analysis is fast and scalable, but it operates on a
fixed abstraction and the results are often a) prone to signif-
icant over-approximation and b) do not provide an example
trace explaining the path from the origin to the sink of a
vulnerability. Model checking [6, 15] on the other hand is
a technique for an exhaustive exploration of a state space
with respect to certain temporal requirements. While well
suited for abstraction refinements and to produce counter-
examples, model checking applies to fixed sized finite models
only making it applicable to investigate control flow prob-
lems, but much less so for tracking data dependencies.

In this work we combine both approaches as follows: We
first run a classical dataflow analysis over a program to de-
tect potential sources and sinks for tainted data. Next, we
build an abstraction of the control flow graph annotated
with the relevant information of where the tainted data is
produced, consumed and changed. This second model en-
ables us to model check for existing paths that lead from a
tainted source to a vulnerable sink and return these paths
to the end user. Moreover, we can apply abstraction re-
finement techniques to the model for checking whether the
resulting path is a spurious one. Hence, we obtain a number
of advantages over existing solutions:

Speed. Traditional software model checking approaches are
prone to suffer from scalability limitations if used with
a fine grained abstraction as needed for a precise taint
analysis. Introducing a first stage that performs the
dataflow analysis on its own, we are able to obtain
all the relevant data for the subsequent model check-
ing. By incorporating the dataflow results into the
model checking problem we are able to have a much
coarser abstraction compared to traditional software
model checking, leading to runtimes that are fractions
of a second for many real life files.

Traceability. One of the disadvantages of traditional data-
flow is that it propagates (sets of) information without
any history about the exact paths along which it has
been propagated. Model checking on the other hand
can produce a counter-example path when a property
is violated. Our staged solution will automatically pro-
duce an example trace from a tainted source to its
potential vulnerable application. This is in particu-
lar helpful in professional software development when
dealing with large complex code.

Precision. Dataflow analysis typically has a fixed abstrac-
tion taking only limited program semantics into ac-
count. While it is good for speed it is less so for pre-
cision. The new combined model checking approach,
however, enables us to make use of the advances in the
area of abstraction refinement. In fact, we are able
to automatically subject any given example trace to
a refinement step where we efficiently determine the
feasibility of that path in the actual program and not
only its abstraction. This is valuable for avoiding false
positives and keeping the overall noise level low.

Flexibility. The approach we present is configurable to deal
with flexible requirements and different taint sources
as well as vulnerability sinks. We will present a frame-
work where the end user can configure and define the
functions and parameters as well as value ranges which
can trigger a vulnerability. Apart from known library
functions that can expose a vulnerability in a certain
context it is possible to mark third party API functions
or parts thereof as introducing or consuming tainted
data. This is particularly helpful in the context of em-
bedded systems, where a certain vulnerability is only
exposed in a certain context or combined with partic-
ular third party code.

In the present work we focused on merging static analysis
and model checking for malicious input analysis. There are a
number of pure static analysis approaches explicitly tracking
potential vulnerabilities. This includes Livshits et al. using
tainted object propagation [13], Wassermann and Su using
a grammar-based solution to regular language containment
[18] and Chess’ implementation in the commercial Fortify
tool [4]. On the model checking side large scale investiga-
tions have been performed with tools such as MOPS [17],
SLAM [2] and SATABS [5]. Common to the model check-
ing tools is that the security checks considered are not data
driven, but rather control flow problems that can easily be
expressed in terms of state machines. On the upside, un-
like the former approaches they are able to create counter-
examples and use inbuilt refinement techniques. Our ap-
proach is an alternative bridging the two worlds.

The remainder of this paper is organized as follows: In Sec-
tion 2 we provide some background on dataflow analysis
and model checking. In particular, we summarize our ear-
lier approach on syntactic software model checking. In the
subsequent Section 3 we present our novel framework of a
staged analysis to detect tainted data and its potentially ma-
licious use. We explain the underlying algorithms, the trans-
formation steps from dataflow results to a model checking
problem, and we highlight the advantages with a running
example. Section 4 provides some more details on our expe-
rience with applying the presented framework to large scale
real life code. This is followed by some conclusions and po-
tential directions for future work in Section 5.

2. BACKGROUND
In this work we build on two techniques from the static
analysis and verification community: Dataflow analysis and
model checking. We first give a brief introduction to dataflow
analysis for tracking potentially malicious user data in pro-
grams. Moreover, we give an introduction to syntactic model

checking, an approach that uses a standard model checking
techniques to solve static analysis problems.

2.1 Dataflow and Taint Analysis
Dataflow analysis is a general term for a techniques of com-
puting for each program point a set of potential information
reaching that point. The information can be values of vari-
ables, variable names, expressions or other items of interest.
Moreover, among other dimensions the analysis is typically
distinguished to be either flow-sensitive or flow-insensitive as
well as either context-sensitive or context-insensitive. This
means, whether the analysis takes the control flow of the pro-
gram into account and/or the calling context. For the pur-
pose of this work we introduce a flow-sensitive, but context-
insensitive analysis. We refer the reader to the future work
section for directions on the latter.

The information computed for each program point is rep-
resented as a lattice L of program facts and each program
point k has the ability to modify its local information based
on the program point’s semantic approximation. This mod-
ification is called a transfer function fk : L→ L. In a flow-
sensitive setting the information from each program point
will be propagated along the control flow graph (CFG) of
the program. We represent the CFG as a directed graph
G = (N,E) where N is a finite set of nodes representing the
program points and E ⊆ N × N is the transition relation
between these nodes. Note, the CFG is an abstraction of the
original control flow as all branches are non-deterministically
interpreted and there is no additional information on con-
ditions or other program constraints. We will address these
in later parts of this work.

To propagate information along the paths of the CFG we
define two sets for each CFG node k ∈ N : INk and OUTk

which represent the information going into node k and leav-
ing node k. Moreover, we define the flow of information
between the nodes as follows:

INk =
⋃

i∈pred(k)

OUTi (1)

This means, input information of node k is the union of the
information available at the exit of its predecessors pred(k).
Note, in the general case merging information is called the
meet operator and is not required to be the set union, but
could be for instance the intersection depending on whether
the analysis is to achieve an over- or under-approximation
of the program’s actual information.

Finally, the effect that each node has on facts of information
is described by their local transfer function that are repre-
sented by the sets GENk and KILLk. Here, GEN represents
the set of new information that is generated, while KILL
represents the set of old information that gets deleted. As
a result the exiting information at each node k is described
as:

OUTk = GENk ∪ (INk \KILLk) (2)

This means, the output is the input information without the
information getting deleted at node k, but added to it is the
newly generated information. For every node k there will be
one equation describing IN and one describing OUT . The
overall equation set is solved by computing the least fixed
point solution to it. Since we have a finite set of equations,
our lattice will be of finite height, and all transfer functions
are monotonous, such a fixed point is guaranteed to exist
and can be computed algorithmically. In this paper we use
a standard worklist algorithm to do so.

For applying the above to track potentially malicious input,
we identify program points where unchecked user data can
enter to program. We mark variables containing this data as
tainted. The transfer functions for nodes where tainted data
is entered or propagated will generate a set of tainted vari-
able names. Fresh assignments to tainted variables “break”
the propagation and will be represented by transfer func-
tions that kill the respective variable names from the tracked
set. This means, the lattice of information will be based on
the variable names at each location, which are potentially
tainted. Solving the dataflow equations propagates to each
node the set of tainted variables. A security issue is then
identified by finding a function that is potentially vulnera-
ble to unchecked user input and uses the computed tainted
data.

Finally, we need to stress that the standard dataflow analysis
has a number of limitations: First of all, there can be some
significant over-approximation every time the union opera-
tor is applied to merge paths. Moreover, standard dataflow
analysis does not provide an example trace about how a
violation as above has occurred. It simply states there is
one at a specific location. Most importantly, there is no
good framework for refinement for dataflow analysis. One
can move to a more detailed lattice of facts requiring a com-
pletely new set of transfer functions or modifying the criteria
for applying the union operator, but it does not match the
advances in the recent years made in the area of Boolean ab-
stractions and counter-example guided abstractions. Much
of these have been addressed in the complementary area of
model checking we are describing next.

2.2 Syntactic Model Checking
Model checking is an automated verification technique to an-
alyze large models represented as labeled graphs for tempo-
ral relationships between these annotations. More formally,
we check whether a model M satisfies a property φ denoted
as M |= φ.

The model is often given as a Kripke structure, which can
be expressed as M = (N,E, µ) where N is a set of nodes,
E ⊆ N×N a transition relation on these nodes and µ : N →
2AP is a labeling function mapping nodes to sets of atomic
propositions AP . The property φ to check on the Kripke
structure can be expressed in various forms of (temporal)
logic. For the purpose of this work we focus on Computa-
tion Tree Logic (CTL) [3] that allows to reason about the
occurrences of the atomic propositions as well as the branch-
ing behavior of the structure.

We briefly summarize: CTL allows path quantifiers A and
E, and the temporal operators G,F,X, and U. The (state)

1 char name[100], query[50];

2 int result;

3 do {

4 scanf("%s", name);

5 unsigned int size = strlen(name);

6 if (size < 50)

7 size = 50;

8 memcpy(query, name, size);

9 result = db_lookup(query);

10 if (!result)

11 printf(name);

12 } while (!result);

!

" #

$

%

&

'

(

))*

)+*

,-.*

)!*

)

result_decl

result_write

result_read
result_read

name_decl

name_write

name_read

name_read

Figure 1: Example program and labeled CFG for uninitialised variable check.

formula Aφ means that φ has to hold on all paths, while Eφ
means that φ has to hold on some path. The (path) formulae
Gφ,Fφ and Xφ mean that φ holds globally in all states, in
some state, or in the next state of a path, respectively. The
until φUψ means that until a state occurs along the path
that satisfies ψ, property φ has to hold. The weak until
φWψ means that φ is satisfied until ψ is satisfied. The
latter includes that ψ never holds, in which case φ holds
forever. In CTL a temporal operator is always immediately
preceded by a path quantifier.

Model checking is used for various verification tasks includ-
ing hardware, high-level system description, and software.
In this work we use model checking to solve static program
analysis problems. In contrast to typical equation solving
approaches to static analysis we use an automata based ap-
proach [12, 8, 16]. While the details of our approach are
described in [9] the basic idea is to map a C/C++ program
to its corresponding control flow graph (CFG), and to label
the CFG with occurrences of syntactic constructs of interest.
The CFG together with the labels can be seen as a Kripke
structure that can easily be mapped to the input language
of a common model checking tool.

A simple example of this approach is shown in Fig. 1. The
program reads user input until it finds a successful database
lookup. To check, e.g., whether variables are written before
they are used, we identify syntactically locations in the pro-
gram that declare variables (and are not initializations at
the same time), locations that write variables, and locations
that read variables. For instance, for the variable result of
Fig. 1 (a) we automatically label corresponding nodes with
result_decl, result_write and result_read, as shown in
Fig. 1 (b). These labels are computed based on a library of
predefined patterns. The patterns themselves are expressed
in a tree query language and are evaluated at compile time
based on the abstract syntax tree (AST) representation of
the parsed code. Similarly, we label the occurrences of vari-
able name.

To check whether after a declaration of result the variable

is written before it is read is expressed in CTL as:

AG (result_decl⇒ A(¬result_read W result_write))

where AGφ stands for“for all paths and in all states φ holds”
and AφWψ for “ψ holds until φ holds”. A counter-example
is a path that declares variable result and reads it before
writing. The same property can be defined for variable name.
In the example both variables satisfy the specification, i.e.,
it is guaranteed that they are not used uninitialized.

The approach to combine CTL expressions with patterns on
the syntax has the advantage that the models become very
compact. Both the CTL language, and the pattern language
are very expressive, and can be used to encode many prop-
erties. Moreover, the model checking itself has the ability
to automatically generate a counter-example trace if a prop-
erty is not satisfied. This is quite useful to explain to the
end user, why a check fails.

However, a limitation of the model checking approach is that
the syntactic patterns are often insufficient to reason about
data. This includes aliasing, buffer sizes, and information
about tainted input. A common approach would be to en-
code these properties as part of the finite state model, i.e. to
introduce state variables that model data, memory, buffers,
or whether data is tainted or not. A disadvantage of these
rich semantic models is that the state space easily becomes
prohibitively large. With the approach as described above
the state space grows in practice about linearly with the
number of lines. Introducing a richer semantic model would
negate this advantage.

Dataflow techniques are efficient means to get a good ap-
proximation of the program state. In this work we use
these techniques to generate small models, suitable for model
checking. This adds the capability to reason about paths to
dataflow techniques. In addition it makes it possible to sub-
ject these paths to a closer analysis with a richer semantic
finite state model only once a potential vulnerability has
been detected.

3. A MULTI-STAGED TAINT ANALYSIS
We call input data tainted if it is provided by the end user
or an unknown third party software. The goal is to check
if the tainted data can propagate through a program such
that it reaches a function or statement that is vulnerable
to it. These types of vulnerabilities are the most common
security problems such as command injections, buffer over-
flows, format string vulnerabilities, and array out of bounds
accesses.

In this section we present our multi-staged approach by
first defining and running dataflow taint analysis and sub-
sequently using that result for syntactic model checking to
obtain example traces and reduce potential false positives.
We start of with a representative example program we use
throughout this paper.

3.1 Running Example
We use the slightly contrived program depicted in Fig. 1
to demonstrate our approach. This program uses scanf in
line 4 to ask the user for a string which is placed into the
100 byte sized name array. Next, the actual length of the
input string is calculated and checked to be of a valid size.
Apparently, the programmer of our example did a simple
typing mistake and used the wrong comparison operator in
line 6. He intended to ensure that size is between 0 and 50
but instead enforces that size is at least 50—we will come
back to this later. In line 8 memcpy copies size bytes of
the input string from name to the global char array query.
Afterwards an embedded database is queried with the func-
tion db_lookup. If this returns no result, name is printed
and the user is again asked for input until finally the query
is successful.

This program has two flaws that in combination are the
cause for severe vulnerabilities. Firstly, the user provides
the value of the variable name. Since size is derived from
name the user’s control extends also to its value. Secondly,
these user controlled variables are used as arguments to the
vulnerable functions memcpy and printf.

This combination of user input and unchecked use leads to
the following vulnerabilities:

• A format string bug, which an attacker can exploit by
providing dangerous format tokens in the input string.
This enables the attacker to read memory values in
line 11 and even execute their own code with the priv-
ileges of the vulnerable program.

• A buffer overflow in line 8 if the user input is longer
than the size of the query buffer. The overflow will
overwrite the adjacent memory and is described in
more detail in Section 3.3.2.

This specific program is a paradigm for a larger class of
problems, namely those programs where user or third party
data is entered and the data will be used without proper
checking in later parts of the software. In the following we
will present the details of our multi-level approach to deal
with these types of issues. The approach has several stages
grouped into two main analysis techniques:

1. Dataflow Analysis

(a) Finding tainted sources

(b) Propagating taints

(c) Locating tainted sinks

2. Model Checking

(a) Generating the model using results from 1.

(b) Defining vulnerabilities as CTL properties

(c) Presenting counter-examples

In the following we will present each of the steps in detail.

3.2 Dataflow Analysis
The first stage of our analysis determines where user input is
entered, where it can potentially flow to in the program and
which vulnerable statements might potentially be reached.
This requires three steps: finding user input, propagating
this tainted input along the control flow and locating vul-
nerable functions. Note, that these steps alone cannot return
a path from the input source to the vulnerability sink. This
will be addressed in Section 3.3.

3.2.1 Finding Tainted Sources
Program functions that are known to return user input or
known to potentially return user input are called tainted
sources. We identified around 50 of those functions from
the standard C library. This, however, can be extended by
the end user to third party functions by editing a configura-
tion list. Once we know which functions return potentially
malicious data, we can identify and track the variables that
are potentially under attacker control.

As an example for a tainted source and how we represent it
in our configuration list, consider the scanf function used
in Fig. 1, which reads user input from stdin:

4 scanf ("%s", name);

The function scanf parses the input into tokens according to
the format specifiers contained in the first parameter. The
resulting tokens are stored into the locations provided by
the additional parameters. In our example the format string
contains only the specifier “%s” which causes scanf to read
subsequent characters until it encounters a whitespace. The
resulting character array is copied to the location of name.

After a call to scanf all parameters starting with the second
as well as its return value are tainted. This behavior is
represented in our configuration list of user input functions
by storing the name of the function, the function parameters
that get tainted, and whether the return value is tainted:

scanf ∈ InputFunctions

taintedParameters(scanf) = {2, . . . , n}
returnTainted(scanf) = true

In a connected embedded context the end users can modify
the configuration list and add their own functions.

3.2.2 Propagating Taints
At this point of the analysis we know which variables are
directly controlled by the user. However, this is insufficient
for any non-trivial security analysis which can easily be ob-
served in our running example:

4 scanf ("%s", name);

5 unsigned int size = strlen(name);

The variable size depends on the value of name which is
supplied by the user. As a result the user has also control
over size. This simple example demonstrates the need of
a dataflow analysis, which propagates the taint information
through assignments.

We use a classical dataflow analysis to determine which vari-
ables may be influenced by user input. The information we
propagate are the sources of user input. Tainted sources are
represented by the name of the variable and the line num-
ber where the user input originally came from. We use this
information later to generate a path starting at that input
function and ending at a vulnerable function. In our exam-
ple program user input is assigned to the variable name in
line 4. This tainted source is therefore represented as (name,
4). The variable name is subsequently used in an assignment
to size. The generated taint information is represented as
(size, 4) because the user input originates from the scanf

function in line 4.

Defining the Flow Equations. As described in Section 2.1
the dataflow equation system is set up by defining for each
node k the sets of incoming information, equation (1), and
the set of outgoing information, equation (2). This requires
in particular to define for each node k the rules when to
generate new facts (GENk) and delete old facts (KILLk).

Taint information is generated when a variable is either
tainted as defined in the previous section or when a tainted
variable is used in an assignment, i.e., the tainting property
is passed on as we saw in the example. This means:

GENk = GENinput
k ∪GENassign

k

A variable is tainted by user input functions if the variable
is either assigned to the return value of that function or the
variable is used as an output parameter:

GENinput
k ([x := f(x1, . . . , xn)]) =

{(x, k) | f ∈ InputFunctions

∧ returnTainted(f)}

GENinput
k ([f(x1, . . . , xi, . . . , xn)]) =

{(xi, k) | f ∈ InputFunctions

∧ i ∈ taintedParameters(f)}

GENinput
k (other stmt) = {}

Moreover, we define that an assignment taints a variable if
there exists already a tainted variable in the righ-hand side
of that assignment. Using the notion use(t) for denoting all
variables occurring in the expression t we define:

GENassign
k ([x := t]) ={

(x, k′) | ∃x′ ∈ use(t) ∧ (x′, k′) ∈ INk

}
GENassign

k (other stmt) = {}

Having covered all the cases we consider as taint generat-
ing, we next define those cases that can delete the tainted
status. We define a variable is “killed” if it gets newly as-
signed to. Other statements do not kill taint information.
Note, however, that by definition of equation (2) we later
add the newly generated information, if in addition the func-
tion taints variables. This means, if a variable gets killed it
might be added again depending on the status of the vari-
ables on the right-hand side. We define kills as:

KILLk([x := t]) =
{

(x, k′) | ∀k′ ∈ N
}

KILLk(other stmt) = {}

The set of flow equations over all nodes is iteratively solved
until the least fixed point reached. Since our lattice of facts
is the product of a finite number of locations and variable
names and since all our flow functions are monotonic, it is
guaranteed that we will reach a fixed point. As mentioned
earlier we use a simple worklist algorithm in our implemen-
tation to solve those equations. The resulting fixed point for
our example is as follows:

k INk OUTk

1 — —
2 — —
3 — —
4 (name, 4), (size, 4) (name, 4), (size, 4)
5 (name, 4), (size, 4) (name, 4), (size, 4)
6 (name, 4), (size, 4) (name, 4), (size, 4)
7 (name, 4), (size, 4) (name, 4)
8 (name, 4), (size, 4) (name, 4), (size, 4)

.
12 (name, 4), (size, 4) (name, 4), (size, 4)

Both name and size are tainted by input originating from
line 4. size is killed by an assignment in line 7.

3.2.3 Locating Tainted Sinks
The next step is to identify if any user input is used as a
parameter to a vulnerable function.

Similar to the list of user input functions we also maintain a
collection of vulnerable functions. This includes the printf

family of functions, memory copy and allocation functions,
string manipulation functions as well as the array access
operator. Each entry specifies a tainted sink. At the moment
we consider about 40 different functions.

The configuration list contains the name and vulnerable pa-

FunRef StringConst Refname

FunCall

scanf TaintSource

FunRef Refdest Refname

FunCall

memcopy TaintSink

Refsize

TaintSink

(a) Tainted source annotation

FunRef StringConst Refname

FunCall

scanf TaintSource

FunRef Refquery Refname

FunCall

memcopy TaintSink

Refsize

TaintSink
(b) Tainted sink annotation

Figure 2: Annotations to the abstract syntax tree.

rameters for each function. The memcpy(dest, src, size)

function which copies a number of bytes from a source to a
destination buffer is represented as follows:

memcpy ∈ VulnerableFunctions

vulnerableParameters(memcpy) = {3}
rangeParameter(memcpy) = 1

This means, the function named memcpy is subject to a vul-
nerability when user input is passed as the third parameter
and not checked to be in the bounds of the first parameter.

Handing Over to Model Checking. In this first stage we
computed the potential sources, sinks, generating and killing
locations. We will use some of this information in the sub-
sequent model checking process to compute and validate
the actual paths through the program. To do so, we anno-
tate the parse tree of the program with the tainted sources,
tainted sinks and killing taint locations. We shall see in an
subsequent section why this is sufficient. With respect to
the running example, the annotations of the abstract syn-
tax tree for the occurrence of scanf is depicted in Fig. 2a
and for memcpy in Fig. 2b. We see both of them are function
calls with different parameters, where some of the param-
eters a marked as tainted sources and sinks. In a similar
fashion other statements are marked as kills.

3.3 Model Checking for Tainted Data
Our dataflow analysis computes an over-approximation of
the statements that can be affected by user input. To reduce
the number of false positives and provide the user with a
feasible path we use model checking. We want to find valid
paths leading from a tainted source to a tainted sink without
encountering a taint kill on the way. Such a path represents
an exploitable vulnerability. The resulting trace through the
source code is presented to the user.

3.3.1 Generating the Model
In the previous analysis step the AST has been annotated
with tainted sources, kills and sinks. An implicit property
of the dataflow analysis is that between every source and
kill relating to the same variable all other nodes in the CFG
are also tainted for that variable. This in particular means,
if we can find a path from a source to a sink without any
corresponding kill in between, this will be a path along which
all nodes are tainted. We consider this as a valid path.

Translating the existing information into a Kripke struc-
ture for model checking, i.e., for finding a path as above,
is straightforward: We directly translate the CFG into the
transition structure of the Kripke model and we label the
CFG nodes with their corresponding tainting labels from
the AST. The resulting labeled CFG of the example pro-
gram is shown in Fig. 3. We see that line 4 is a tainted
source, line 8 and line 11 are sinks and than the assignment
in line 7 kills the taint for size.

3.3.2 Defining Vulnerabilities as CTL Properties
As mentioned above, we like to find a path from a source to
a sink without an intermediate kill. Moreover, we like the
model checker to generate us the path as a counter-example.
This means, we check for the negation of the above, i.e., that
there is no path from a source to a matching sink without
some intermediate kill. Should this be violated, the model
checker will automatically generate the path we originally
were looking for. More formally, this is expressed as:

AG (taint source⇒ AX (A (¬ taint sink) W taint kill))

This means, on all paths every node is either not labeled
with taint source or for all following nodes holds that there
is never a node labeled taint sink before a node labeled
taint kill. Of course, the actual CTL formula is slightly more
complex since the taint kill has to correspond to the variable
names reaching the taint sink and also the taint source has
to match the taint sink. As a result we will have one CTL
formula for every occurrence of a sink.

3.3.3 Presenting Counter-Examples
When the model checker determines that the CTL formula
is not valid for the given Kripke structure it will report a
counter-example. Because of the high level of abstraction
where branching is interpreted as non-deterministic choice,
this path might still be spurious. We address this in the
next section.

As for the example program two paths are reported to the
user: The first path starts at the scanf function in line 4
and ends with the use of name within the printf function in
line 11. The second path also starts at the scanf function,
takes the false branch—by this skipping line 7—and ends
with the use of size as the third argument for the memcpy

function in line 8. The output generated by our tool is as
follows:

1 char name[100], query[50];

2 int result;

3 do {

4 scanf("%s", name);

5 unsigned int size = strlen(name);

6 if (size < 50)

7 size = 50;

8 memcpy(query, name, size);

9 result = db_lookup(query);

10 if (!result)

11 printf(name);

12 } while (!result);

!

" #

$

%

&

'

(

))

)*

+,-

)!

)

taint_sinksize

taint_source

taint_sinkname

taint_killsize

Figure 3: Example program and labeled CFG for the taint analysis.

wess11.c:7: warning: User controlled

variable ‘size ’ used as parameter

1: main -

2: main -

3: main -

4: * main - reference to variable ‘name ’

5: main -

6: * main - take the False branch

8: * main - reference to variable ‘size ’

Both paths highlight severe vulnerabilities that enable an
attacker to compromise the system. The first issue is a for-
mat string bug that can be exploited by providing dangerous
format tokens to the input string. This includes“%x”, which
reads the next four bytes from the stack and “%n”, which
writes four bytes to an arbitrary memory location. The at-
tacker can use these two format tokens to read memory con-
tents or even execute his own code with the privileges of the
vulnerable program.

The other vulnerability is a potential buffer overflow. If
the user input in line 4 is longer than the size of the query

buffer it will overflow and memcpy will overwrites the adja-
cent memory. Buffer overflows have a long history and are
ranked third most dangerous in the current CWE/SANS list.

3.4 Improvements
We used several improvements to reduce the number of false
positives and to increase the precision of our analysis. One
is an additional interval abstract interpretation that is per-
formed before the other analysis steps, and the other im-
provement an integration into an existing abstraction refine-
ment framework. We will briefly outline both improvements.

3.4.1 Value Range Validation
As a first step in our improved analysis we run an interval
abstraction interpretation [7]. As a result we get potential
value ranges for all integer variables at every relevant node
in the AST. We make use of this information to see if certain

vulnerabilities are in fact false positives, because the devel-
oper appropriately checked the tainted data before using it.

The developer of our original example simply used the wrong
comparison operator when checking size in line 6. Consider
the following modification to our example:

6 if (size > 50)

7 size = 50;

By correcting the original mistake size is always less than
or equal to 50. Our interval abstract interpretation will be
able to also derive this fact. Hence, while the user still has
control over the actual value of size, there is nonetheless
no longer a security issue in the memcopy call because size

is checked to be smaller than the size of query. A buffer
overflow is successfully prevented by user input validation.

3.4.2 Abstraction Refinement
Classical dataflow analysis works with a fixed model of ab-
straction defined by the transfer functions onto the abstract
domain. Refinement as such can be partially achieved by
refining the abstract domain, but it does not change the
underlying model of flow equations between nodes of the
control flow graph. There is no refinement of the CFG in-
corporating additional program semantics including infor-
mation about loop bounds and conditionals. On the other
hand, the model checking community has long worked on
program refinement to tune the trade-off between a precise
model and a speedy analysis.

In particular, we like to refine our analysis in such a way
that we can automatically identify spurious vulnerabilities
resulting from unfeasible code paths. Right now, model
checking on the level of the CFG abstraction can create
counter-examples including such infeasible paths. A stan-
dard way to add more precision is counter-example guided
abstraction refinement (CEGAR), as used in [11, 5]. In ear-
lier work [10] we developed a different approach computing
a precise least solution of an interval equation system, which

is computationally faster, at the expense of some precision.
The main idea is to subject counter-examples to an inter-
val abstract interpretation and check for the feasibility of
that path. If the path is infeasible the model is refined with
observer automata reflecting the minimal cause for it. The
analysis is re-run until a bug disappears or no more infeasi-
ble counter-example occurs. We implemented the approach
in our Goanna tool we use for the experiments in Section 4.

Independent of the exact abstraction refinement approach
used, program refinement works very well with model check-
ing and is something that is not straightforward to achieve
with the classical dataflow framework.

4. EXAMPLES
We implemented the approach in our industrial strength
static analysis tool for C/C++ called Goanna2. The tool
itself is a closed source project, but available for commer-
cial as well as academic use. The core technology is cen-
tered around syntactic model checking, abstract interpreta-
tion and abstraction refinement. Some details can be found
in [9].

For experimenting with our proposed security analysis we
investigated several open source C/C++ projects. Some
metrics are depicted in Fig. 4. The runtimes are typically
3 to 4 times slower than compilation, but this includes the
abstract interpretation process, the dataflow analysis and
the model checking phase. For the purpose of this work we
choose three interesting issues to show the validity of our
approach.

4.1 wu-ftpd 2.6.0
Our analysis reports a use of a tainted variable in a memory
allocation inside the fb_realpath() function, which resides
in the realpath.c file.

158 loop:

186 p = resolved;

210 size_t len = strlen(p);

211 char *tmp = calloc(len + 1,
sizeof(char));

219 n = readlink(p, resolved , MAXPATHLEN);

235 goto loop;

In line 219 the content of the symbolic link referred to by p

is stored into resolved. The content and length of symbolic
links could be controlled by the user. In the next loop it-
eration, resolved is used in an assignment to p in line 186.
len is then derived from the size of p in line 210 and sub-
sequently used as the size for an allocation. If an integer
overflow occurs in the allocation on line 211 an attacker can
cause a buffer overflow possibly compromising the system.

It is not likely that this issue presents an exploitable vulner-
ability, because the size of len will not be larger than MAX-

PATHLEN. Still, it exhibits a complicated source code struc-
ture, which depends on gotos and where taint follows com-
plicated paths. Without counter-examples the cause would
be difficult to track down.

2http://www.redlizards.com

Program Source Reach Kill Sink Issues

bacnet-stack 0.5.9 108 754 12 0 0

git 1.7.6-rc1 90 803 36 16 2

mongoose 3.0 143 413 10 6 0

NanoStack 1.1.0 24 375 6 2 0

nfs-utils 0.1.6 59 600 18 7 0

redis 2.9.0 59 589 8 11 2

sqlite 3.7.7.1 5 134 6 13 2

sendmail 8.14.5 35 533 27 30 2

wu-ftpd 2.6.0 130 1146 27 18 2

Figure 4: Analysis results for open source projects.

4.2 redis 2.9.0
In the rdb.c source file inside the rdbLoadDoubleValue()

function a tainted variable is used to access an array.

660 char buf [128];

661 unsigned char len;

663 if (fread(&len ,1,1,fp) == 0)
return -1;

664 switch(len) {

665 case 255: *val = R_NegInf; return 0;

666 case 254: *val = R_PosInf; return 0;

667 case 253: *val = R_Nan; return 0;

668 default:

669 if (fread(buf ,len ,1,fp) == 0)
return -1;

670 buf[len] = ’\0’;

671 sscanf(buf , "%lg", val);

672 return 0;

673 }

In line 663 a byte is read from a file and stored in len. In
line 669 len number of bytes are read and stored in buf. len
is subsequently used to access buf in line 670.

If len is between 129 and 252 a buffer overflow occurs in
line 669 and the array access in line 670 would be out of
bounds. Depending on the other properties of this program
this could exhibit a vulnerability.

4.3 sqlite 3.7.7.1
In the shell.c source code file inside the find_home_dir()

function a tainted variable is used as the size for a memory
allocation.

2531 if (! home_dir) {

2532 home_dir = getenv ("HOME");

2533 }

2554 if(home_dir){

2555 int n = strlen30(home_dir) + 1;

2556 char *z = malloc(n);

2559 }

In line 2532 the contents of the HOME environment variable
are stored into home_dir. In line 2555 len is derived from
home_dir. Afterwards n is used as the number of bytes allo-
cated with the malloc function. An attacker could possibly
choose the length of the HOME variable so that an integer
overflow occurs in line 2555 and malloc allocates 0 bytes.
This leads to a buffer overflow when the program writes to
z and believes to have allocated enough memory.

However, this warning is a false positive. The non-library
function strlen30 ensures that its result will fit into 30 bits.
Our analysis does not know about this specific property of
strlen30. Still the warning has the benefit that the pro-
grammer thinks about the potential problem. Afterwards
he can easily mute this warning.

5. CONCLUSIONS

Summary. In this work we presented a new stage dataflow
and model checking approach for malicious code detection.
Unlike each individual approach we obtain a solution that is
fast, precise, traceable and flexible. Dataflow analysis pro-
vides efficient means to detect and track tainted data and is
much better suited than model checking to deal with data
dependent properties. However, unlike standard dataflow
analysis our staged solution is able to generate counter-
example traces indicating the flow of information leading to
a security vulnerability. Moreover, by incorporating model
checking techniques we are able to make use of existing ab-
straction refinement techniques enhancing the precision of
the analysis in an efficient manner.

Future Work. There are a number of directions to extend
the current work. Our main goal is to extend the current
analysis, which is intra-procedural to an inter-procedural
whole program analysis. The reasons are clear: Most so-
phisticated security bugs span several functions and are of-
ten due to the fact that several developers implement differ-
ent parts of the code base without a unified security view.
The current version of Goanna already supports a summary-
based inter-procedural analysis for important facts such as
potential null pointers, ranges of variables and allocated
memory. We expect it to be a straightforward process to
include the staged taint analysis into the same framework.

Another area of interest is to include a flow-sensitive alias
analysis into the proposed framework. Capturing pointer
alias information as part of the analysis would help to de-
tect more sophisticated security issues and would also add
precision to the current checks. One of the challenges with
a precise alias analysis is to keep the performance overhead
low. Again, we envision a combined staged solution similar
to the proposed method to obtain the best of both worlds.

6. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques and Tools. Addison-Wesley,
1986.

[2] T. Ball, B. Cook, V. Levin, and S. K. Rajamani. Slam
and static driver verifier: Technology transfer of
formal methods inside microsoft. In In: IFM. (2004,

pages 1–20. Springer, 2004.

[3] M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal
logic of branching time. In POPL ’81, pages 164–176.
ACM, 1981.

[4] B. Chess and J. West. Secure programming with static
analysis. Addison-Wesley Professional, 2007.

[5] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav.
SATABS: SAT-based predicate abstraction for
ANSI-C. In Proc. TACAS 2005, LNCS 3440, pages
570–574, 2005.

[6] E. M. Clarke and E. A. Emerson. Design and
synthesis of synchronization skeletons for branching
time temporal logic. In Logics of Programs Workshop,
New York, May 1981, volume 131 of LNCS, pages
52–71. Springer Verlag, 1982.

[7] P. Cousot. Semantic foundations of program analysis.
In S. Muchnick and N. Jones, editors, Program Flow
Analysis: Theory and Applications, chapter 10, pages
303–342. Prentice-Hall, Inc., New Jersey, 1981.

[8] D. Dams and K. Namjoshi. Orion: High-precision
methods for static error analysis of C and C++
programs. Bell Labs Tech. Mem. ITD-04-45263Z,
Lucent Technologies, 2004.

[9] A. Fehnker, R. Huuck, P. Jayet, M. Lussenburg, and
F. Rauch. Model checking software at compile time. In
Proc. TASE 2007. IEEE Computer Society, 2007.

[10] A. Fehnker, R. Huuck, and S. Seefried.
Counterexample guided path reduction for static
program analysis. In Concurrency, Compositionality,
and Correctness, volume 5930 of LNCS, pages
322–341. Springer, 2010.

[11] T. Henzinger, R. Jhala, R. Majumdar, and
G. SUTRE. Software verification with BLAST. In
Proc. SPIN2003, LNCS 2648, pages 235–239, 2003.

[12] G. Holzmann. Static source code checking for
user-defined properties. In Proc. IDPT 2002,
Pasadena, CA, USA, June 2002.

[13] V. B. Livshits and M. S. Lam. Finding security
vulnerabilities in java applications with static analysis.
In Proceedings of the 14th conference on USENIX
Security Symposium - Volume 14, pages 18–18,
Berkeley, CA, USA, 2005. USENIX Association.

[14] F. Nielson, H. R. Nielson, and C. L. Hankin.
Principles of Program Analysis. Springer, 1999.

[15] J.-P. Queille and J. Sifakis. Specification and
verification of concurrent systems in CESAR. In Proc.
Intl. Symposium on Programming, April 6–8, pages
337–350. Springer Verlag, 1982.

[16] D. A. Schmidt and B. Steffen. Program analysis as
model checking of abstract interpretations. In Proc.
SAS ’98, pages 351–380. Springer-Verlag, 1998.

[17] B. Schwarz, H. Chen, D. Wagner, J. Lin, W. Tu,
G. Morrison, and J. West. Model checking an entire
linux distribution for security violations. In ACSAC
’05, pages 13–22. IEEE Computer Society.

[18] G. Wassermann and Z. Su. Sound and precise analysis
of web applications for injection vulnerabilities.
SIGPLAN Not., 42:32–41, June 2007.

