High-Performance Main-Memory Database Systems
and Modern Virtualization: Friends or Foes?

Tobias MUhlbauer- Wolf Rédigert

Andreas Kipf

Alfons Kemper Thomas Neumann

Technische Universitat Minchen
{muehlbau, roediger, kipf, kemper, neumann}@in.tum.de

ABSTRACT

Virtualization owes its popularity mainly to its ability to
consolidate software systems from many servers into a sin-
gle server without sacrificing the desirable isolation between
applications. This not only reduces the total cost of owner-
ship, but also enables rapid deployment of complex software
and application-agnostic live migration between servers for
load balancing, high-availability, and fault-tolerance.

However, virtualization is no free lunch. To achieve isola-
tion, virtualization environments need to add an additional
layer of abstraction between the bare metal hardware and
the application. This inevitably introduces a performance
overhead. High-performance main-memory database sys-
tems are specifically susceptible to additional software ab-
stractions as they are closely optimized and tuned for the
underlying hardware. In this work, we analyze in detail how
much overhead modern virtualization options introduce for
high-performance main-memory database systems. We eval-
uate and compare the performance of HyPer and MonetDB
under three modern virtualization environments for analyt-
ical as well as transactional workloads. Our experiments
show that the overhead depends on the system and virtual-
ization environment being used. We further show that main-
memory database systems can be efficiently deployed in vir-
tualized cloud environments such as the Google Compute
Engine and that “friendship” between modern virtualization
and main-memory database systems is indeed possible.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

Keywords

Main Memory Database Systems; Virtualization

*Recipient of the Google Europe Fellowship.

TRecipient of the Oracle External Research Fellowship.
This work has further been partially sponsored by the Ger-
man Federal Ministry of Education and Research (BMBF)
grant RTBI 011512057.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author. Copyright is held by the owner/author(s).
DanaC’15, May 31-June 4, 2015, Melbourne, Victoria, Australia.

ACM 978-1-4503-3724-3/15/05.

http://dx.doi.org/10.1145/2799562.2799643.

guest OS

guest OS guest OS
VirtualBox VMM

KVM module

host kernel

hardware

Figure 1: Modern virtualization environments

1. INTRODUCTION

Virtualization is a popular technique to isolate several
virtualized environments on one physical machine and en-
sures that each of the environments seems to run on their
own dedicated hardware resources (e.g., CPU, memory, and
I/O). This enables the consolidation of software systems
from many servers into a single server without sacrificing
the desirable isolation between the systems. This not only
reduces the total cost of ownership, but also enables rapid
deployment of complex software and application-agnostic
live migration between servers for load balancing, high avail-
ability, and fault-tolerance.

However, virtualization is no free lunch. The virtualiza-
tion layer needs to ensure the desired isolation to avoid
that software running in one virtual environment affects
the stability or performance of software running in a sep-
arate environment on the same physical machine. This iso-
lation is bound to introduce a certain overhead. In this
work we analyze the impact of several modern virtualiza-
tion techniques on high-performance main-memory database
systems. Main-memory database systems are especially sus-
ceptible to additional software abstractions as they are of-
ten closely optimized for the underlying hardware, using ad-
vanced CPU instructions for optimal performance. They
are further sensitive to memory performance as they cannot
hide additional overheads behind disk access latencies. We
evaluate and compare the performance of two modern main-
memory database systems, HyPer [6] and MonetDB [7], run-
ning under three modern virtualization environments. We
compare containerization (Docker) and hypervisors (Virtu-
alBox and KVM+QEMU) shown in Figure 1 to bare metal
performance using transactional (TPC-C, TATP) as well as
analytical (TPC-H) benchmarks. As we will see, the over-
head of virtualization depends heavily on the combination

w 8 +18.2% — +29.9%
v 6| o S . -
= 4
c
2 2
0
Bare Metal Docker KVM-+QEMU VirtualBox
(a) HyPer
+ 557%
w 125 =
o 100
E 75
‘é 50 + 73%
= 25+ e —— o = o —
0 [| [|
Bare Metal Docker KVM+QEMU VirtualBox

(b) MonetDB

Figure 2: Running the 22 TPC-H queries (4 threads,
scale factor 10, mean of 10 runs) with HyPer and
MonetDB on our evaluation system (cf., Table 1)

CPU Intel Core i7-3770

Frequency 3.40 GHz (3.90 GHz maximum turbo)
Cores/Threads 4/8

L1-/L2-Cache 32KB/256 KB per core

L3-Cache 8MB

Memory 32GB DDR3 1600 MHz

Table 1: Specification of the evaluation system

of systems used, ranging from no overhead at all to severe
performance degradations. We further evaluate the per-
formance in an actual cloud environment using the Google
Compute Engine that internally uses KVM.

Bare metal execution adds no performance overhead but
also provides the least isolation between running processes.
Sandboxing like in Google’s Chrome browser can be consid-
ered application-level virtualization and adds little overhead
and enables the application to manage shared resources.
However, this form of isolation is prone to software bugs of
a single application and this form of isolation might not be
allowed for all use cases due to legal restrictions. Operating-
system-level virtualization is provided by so-called “contain-
ers” in Linux, where resources are managed using cgroups.
Docker is a popular example of a container management soft-
ware and we use it as an instance for this category in our
benchmarks. Other container managers include LXC and
Imctfy. In general, for containers, the kernel is shared be-
tween the host and guest operating systems. Thus, guests
cannot use a different kernel than the host (e.g., running
a Windows guest on a Linux host is not possible). This
limitation is, however, usually not a problem for data cen-
ters. Still, the shared kernel imposes a higher security risk
than running separate kernels on the same hardware. Fi-
nally, hypervisors provide the strongest isolation guarantees
and allow running multiple operating systems with differ-
ent kernels on one physical machine. Among other things,
hypervisors also need to isolate interrupts and accesses to
memory. This is expensive and was initially performed by a
software technique called binary translation. In recent years,
CPU vendors added specialized instructions (e.g., Intel VT-
x/EPT and AMD-V/RVI) in order to allow hardware-as-

—e— Bare Metal —&— KVM+QEMU —+— VirtualBox —— GCE

4 4
S 3 S 3
b b
8 2 g 2
wn (0]
1 1
0 - : : 0 - : :
1 2 4 1 2 4
number of threads number of threads
(a) HyPer (b) MonetDB

Figure 3: Scalability of TPC-H (scale factor 10)
query processing in virtualized environments on our
evaluation system (cf., Table 1) and on a Google
Compute Engine (GCE) instance

sisted virtualization. Both hypervisors used in our exper-
iments, KVM+QEMU and VirtualBox, use these instruc-
tions. A downside of hypervisor-based virtualization is that
the hypervisor needs to explicitly expose instruction set ex-
tensions to the underlying guest operating system. E.g., the
most recent VirtualBox release (5.0.0 beta 1) that we use
in our benchmarks is the first release of this hypervisor to
enable the rather old SIMD instruction set extension SSE4.2
by default.

2. BENCHMARKS

To better understand the performance of current main-
memory database systems in modern virtualization environ-
ments, we benchmark our hybrid OLTP and OLAP main-
memory database system HyPer [6] version 0.5-186 and Mon-
etDB [7] version 11.19.9, a main-memory database system
optimized for analytical workloads. As virtualization en-
vironments we choose the container management software
Docker (version 1.5.0), the virtualization software package
VirtualBox (version 5.0.0 beta 1), and the virtualization
kernel module KVM (kernel 3.16.0-23) together with the
QEMU hypervisor (version 2.1.0). All virtualization envi-
ronments run on a Ubuntu 14.10 kernel 3.16.0-23 host op-
erating system on an Intel Ivy Bridge CPU. Guest operat-
ing systems are also Ubuntu 14.10. For KVM+QEMU and
VirtualBox, the guests are assigned 28 GB of main memory
and 4 cores (virtualized cores have at least SSE 4.2). Ta-
ble 1 shows the full specification of the evaluation system.
In addition to the virtualized environments, we also run all
benchmark workloads under the unmodified host operating
system on unvirtualized hardware (bare metal). As work-
loads we use the analytical benchmark TPC-H (scale fac-
tor 10) and the transactional benchmarks TPC-C (5 ware-
houses) and TATP (1 million subscribers). Raw experimen-
tal results (as CSVs) and configuration files can be down-
loaded from our GitHub repository: https://github.com/
muehlbau/mmdbms-virtualized.

Figure 2 shows the total runtime of the 22 TPC-H queries
(scale factor 10) for all tested configurations when running
the database systems with 4 worker threads. Runtimes
are the mean of 10 runs. For HyPer, we did not mea-
sure a significant overhead compared to bare metal execu-
tion for all tested virtualization environments. Docker, as
expected, added the least overhead, KVM+QEMU added

+ 557%
w 125 =
v 100
E 75
£ 50 + 73% + 72%
T I i I s O

Bare Metal KVM+QEMU VirtualBox VirtualBox
(vDI) (/dev/shm)

Figure 4: Storage location of database files matters
when running MonetDB in VirtualBox

around 18% runtime, and VirtualBox added around 30%
runtime. For MonetDB, Docker also adds almost no over-
head. For KVM+QEMU and VirtualBox, on the other
hand, we measured a significant overhead of 73% for KVM-
+QEMU and a staggering 557% for VirtualBox.

To better understand this overhead we further looked at
single-threaded performance and the scalability of both da-
tabase systems. Figure 3 shows the speedup with the num-
ber of worker threads for HyPer and MonetDB. We did
not include Docker in this experiment, as it is almost in-
distinguishable from bare metal. Interestingly, when run-
ning MonetDB with only one worker thread, the overhead of
KVM+QEMU and VirtualBox for MonetDB is much closer
to what we measured with HyPer. It is hard to determine
what exactly causes the performance degradation of Mon-
etDB under virtualized environments—especially in Virtual-
Box—with more worker threads. In microbenchmarks, we
were able to measure up to 10% overhead for latencies caused
by TLB misses and page faults and up to 60% overhead for
system calls in KVM+QEMU and VirtualBox compared to
bare metal. HyPer does not suffer so heavily from these
overheads as it has a different execution and paralleliza-
tion model with less intermediate materialization. E.g., for
TPC-H query 1, MonetDB creates a 3 GB/s write load on
the memory bus (measured with Intel PCM), while HyPer
only writes a few MB/s. An analysis of both database sys-
tems with strace also revealed that MonetDB issues more
system calls during query execution, especially when using
parallel worker threads. For VirtualBox it further depends
where MonetDB’s database files are stored. MonetDB maps
these files into memory and this is very expensive when the
backing file is stored on a VirtualBox disk image (VDI). By
moving the database files to an in-memory file system in
the virtual machine (/dev/shm), we were able to drastically
speed up MonetDB in VirtualBox (see Figure 4).

As MonetDB is an analytical system, we measured trans-
actional performance solely with HyPer. Figure 5 shows
HyPer’s TPC-C (5 warehouses) and TATP (1M subscribers)
sustained transaction throughputs for the different virtual-
ization environments. Compared to bare metal execution,
virtualization adds up to 18% of overhead. Similar to the
analytical benchmarks, Docker adds the least overhead, fol-
lowed by KVM+QEMU, and VirtualBox.

Finally, we evaluated HyPer and MonetDB in a cloud-
provisioned virtualized environment using Google Compute
Engine (GCE). Internally, Google uses KVM to offer virtu-
alized environments that can easily be provisioned on a pay-
per-use basis. The instance configuration and benchmark re-
sults are shown in Table 2. Both, HyPer and MonetDB, per-
form very similarly compared to running in KVM+QEMU
on our evaluation machine taking the lower per-core fre-

(a) nl-standard-8 instance specification

CPU Architecture Sandy Bridge

Frequency 2.60 GHz
Virtual Cores 8
Memory 30GB

(b) HyPer

TPC-C (single-threaded)
TATP (single-threaded)

88 448 transactions per second
371 885 transactions per second

TPC-H (1 thread)
TPC-H (2 threads)
TPC-H (4 threads)
TPC-H (8 threads)

31.10s (+/- 1.94s) runtime
15.37s (+/- 1.33s) runtime
8.06s (+/- 0.73s) runtime
5.74s (+/- 0.53s) runtime

(¢) MonetDB

TPC-H (1 thread)
TPC-H (2 threads)
TPC-H (4 threads)
TPC-H (8 threads)

104.63s (4/- 6.76s) runtime
60.54s (4/- 2.16s) runtime
37.79s (+/- 0.77s) runtime
35.00s (+/- 0.825s) runtime

Table 2: TPC-C (5 warehouses), TATP (1M sub-
scribers), and TPC-H queries (scale factor 10) on a
nl-standard-8 Google Compute Engine instance

quency (2.60 GHz compared to 3.40 GHz) and the older mi-
croarchitecture of the CPU into consideration. These are en-
couraging results that show that modern cloud-provisioned
infrastructure and high-performance main-memory database
systems can efficiently be used together.

Of course, the question remains if resources can be used
even more efficiently by consolidating multiple tenants in
a single database system that “owns” the whole system.
This might allow better usage of system resources compared
to adding an additional layer, i.e., the virtualization layer.
However, this also raises legal questions, e.g., whether sen-
sible data of tenants can be stored together, and security
concerns, e.g., whether a software bug in the database sys-
tem can lead to data leaks between tenants.

3. RELATED WORK

There is only limited literature in the database field that
compares the performance of database systems in virtualized
environments with their native performance. Most existing
work agrees that virtualization causes only a small overhead
for database systems both for transactional and analytical
workloads [8, 2, 5, 1, 4, 9].

Minhas et al. [8] measured the impact of virtualization
on the performance of PostgreSQL in the TPC-H analytical
benchmark. They found two major aspects of virtualization
with Xen that can slow down performance compared to bare
metal: system calls, which are up to 10X more expensive,
and page faults, which take up to twice as long on virtualized
hardware. The overhead for virtualized system calls does
not affect the performance of PostgreSQL as system calls
account only for a minor fraction of the execution time. The
additional overhead for page faults on the other hand causes
a significant slow down when each query is run in a separate
process. Yet, using the same process for all queries reduces
the overhead to only 10 % when the data is in cache and 6 %
for cold caches. The cold-cache performance benefits from
aggressive prefetching that hides Xen’s overhead for I/O and
even causes some queries to run faster than on bare metal.

150k

100k
50k

throughput [TX/s]

KVM+QEMU VirtualBox
(a) TPC-C (single-threaded, 5 warehouses)

Bare Metal Docker

600k

400k
200k

throughput [TX/s]

Bare Metal Docker KVM-+QEMU VirtualBox

(b) TATP (single-threaded, 1M subscribers)

Figure 5: Transactional benchmarks with HyPer on our evaluation system (cf., Table 1)

Curino et al. [3] promote the idea to integrate virtualiza-
tion in the database system itself instead of using virtual-
ized hardware. Their proposed Relational Cloud consists of
a single database system per physical machine that manages
several logical databases. They found that a single DBMS
with 20 databases achieves about 6x the TPC-C through-
put of 20 virtualized database system instances managing
one database each. They attribute the performance degra-
dation to multiple copies of operating/database systems and
missing coordination of resources, e.g., logs and buffer pools.

The TPC-VMS [10] benchmark was developed to enable
standardized comparisons for virtualized environments and
adapts the TPC-C, TPC-E, TPC-H, and TPC-DS bench-
marks for this purpose. TPC-VMS requires that a database
system runs one of the four benchmarks simultaneously in
three virtual machines that share a physical machine. Deehr
et al. [4] provide TPC-VMS results for SQL Server using
VMware for the transactional TPC-E benchmark. The over-
head of virtualization compared to three native SQL Server
instances on the same physical machine was a mere 7 %.

Grund et al. [5] measured the impacts of the Xen virtu-
alization technology on the analytical performance of main-
memory database systems. They found that the virtualized
system behaved just as the physical system, except for an in-
creased overhead for memory address translation, resulting
in a minor performance degradation of 7% for the HYRISE
in-memory database system in the TPC-H benchmark.

Salomie and Alonso [9] present the Vela system that scales
off-the-shelf database systems on multi-core machines and
clusters using virtualization to provide a consistent view
on resources. They found that main-memory workloads
behave almost the same whether they are run on virtual-
ized hardware or bare metal, while I/O-intensive workloads
lead to higher CPU utilization and thus reduce performance.
They attribute the absence of larger performance differences
between virtualized and non-virtualized database systems
mostly to the support of modern processor for virtualiza-
tion, i.e., the Intel VT-x and AMD-V extensions.

Soror et al. [11] cover the wvirtualization design problem,
i.e., how to allocate resources to virtual machines running
on the same physical machine. This becomes especially im-
portant when different virtual machines experience different
workload characteristics (e.g., CPU- vs. I/O-intensive).

4. CONCLUSION

Virtualization reduces the total cost of ownership by en-
abling multi-tenancy, offers rapid deployment options for
applications, and can ensure high availability, load balanc-
ing, and fault tolerance via live migrations. This comes at
the cost of additional overheads for the applications running

in virtualized environments. Modern virtualization options
differ in the degree of isolation ensured and the overhead
imposed on the applications running in the virtualization
environment. We have shown that containerization incurs
almost no overhead and that the performance impact of
hypervisor-based virtualization depends on the system being
used and its configuration. While we measured only little
overhead for our HyPer main-memory database system, hy-
pervisors can significantly impact the performance of Mon-
etDB. Finally, we have shown that main-memory database
systems can be deployed in virtualized cloud environments
such as the Google Compute Engine without major perfor-
mance degradations.

5. REFERENCES

[1] M. Ahrens and G. Alonso. Relational databases,
virtualization, and the cloud. In ICDE, 2011.

[2] S. Bose, P. Mishra, P. Sethuraman, and H. R. Taheri.
Benchmarking database performance in a virtual
environment. In TPCTC, 2009.

[3] C. Curino, E. P. C. Jones, R. A. Popa, N. Malviya,
E. Wu, S. Madden, H. Balakrishnan, and
N. Zeldovich. Relational cloud: A
database-as-a-service for the cloud. In CIDR, 2011.

[4] E. Deehr, W. Fang, H. R. Taheri, and H. Yun.
Performance analysis of database virtualization with
the TPC-VMS benchmark. In TPCTC, 2014.

[6] M. Grund, J. Schaffner, J. Kriiger, J. Brunnert, and
A. Zeier. The effects of virtualization on main memory
systems. In DaMoN, 2010.

[6] A. Kemper and T. Neumann. HyPer: A hybrid
OLTP&OLAP main memory database system based
on virtual memory snapshots. In ICDE, 2011.

[7] S. Manegold, M. L. Kersten, and P. A. Boncz.
Database Architecture Evolution: Mammals
Flourished long before Dinosaurs became Extinct.
PVLDB, 2(2), 2009.

[8] U. F. Minhas, J. Yadav, A. Aboulnaga, and K. Salem.
Database systems on virtual machines: How much do
you lose? In ICDE Workshop, 2008.

[9] T. Salomie and G. Alonso. Scaling off-the-shelf
databases with vela: An approach based on
virtualization and replication. DEBU, 38(1), 2015.

[10] W. D. Smith and S. Sebastian. Virtualization
performance insights from TPC-VMS. Transaction
Processing Performance Council, 2013.

[11] A. A. Soror, A. Aboulnaga, and K. Salem. Database
virtualization: A new frontier for database tuning and
physical design. In ICDE Workshop, 2007.

