
One DBMS for all: the Brawny Few and the Wimpy Crowd

Tobias Mühlbauer Wolf Rödiger Robert Seilbeck

Angelika Reiser Alfons Kemper Thomas Neumann

Technische Universität München

{muehlbau, roediger, seilbeck, reiser, kemper, neumann}@in.tum.de

ABSTRACT
Shipments of smartphones and tablets with wimpy CPUs
are outpacing brawny PC and server shipments by an ever-
increasing margin. While high performance database sys-
tems have traditionally been optimized for brawny systems,
wimpy systems have received only little attention; leading to
poor performance and energy ine�ciency on such systems.

This demonstration presents HyPer, a high-performance
hybrid OLTP&OLAP main memory database system that
we optimized for both, brawny and wimpy systems. The
e�cient compilation of transactions and queries into e�-
cient machine code allows for high performance, indepen-
dent of the target platform. HyPer has a memory footprint
of just a few megabytes, even though it supports the SQL-
92 standard, a PL/SQL-like scripting language, and ACID-
compliant transactions. It is the goal of this demonstra-
tion to showcase the same HyPer codebase running on (a)
a wimpy ARM-based smartphone system and (b) a brawny
x86-64-based server system. In particular, we run the TPC-
C, TPC-H, and a combined CH-benCHmark and report per-
formance and energy numbers. The demonstration further
allows the interactive execution of arbitrary SQL queries and
the visualization of optimized query plans.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

Keywords
high performance; energy e�ciency; wimpy; brawny

1. INTRODUCTION
Processor shipments reached 1.5 billion units in 2013, a

rise of 24% over 2012 [4]. This growth was mainly driven by
strong smartphone and tablet sales. PC and server sales,
however, stagnated (see Fig. 1). As shipments of wimpy
CPUs are outpacing shipments of brawny CPUs, we are en-
tering an era of the brawny few and the wimpy crowd.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2376-5/14/06 ...$15.00.

http://dx.doi.org/10.1145/2588555.2594527.

wimpy brawny
Smartphone Tablet PC Server

0M

50M

100M

150M

200M

predominantly x86-64

predominantly ARMv7

sh
ip
m
en

ts
in

u
n
it
s Q2 2012

Q2 2013

Figure 1: Shipments of wimpy processors are out-
pacing shipments of brawny processors [4]

While the number of devices with wimpy processors is
ever-increasing, these devices receive only little attention
from the database community. It is true that database ven-
dors have developed small-footprint database systems such
as IBM DB2 Everyplace, Oracle Lite and BerkeleyDB, SAP
Sybase SQL Anywhere, and Microsoft SQL Server CE. Yet,
these systems either reached end-of-life, are non-relational
data stores, or are intended for synchronization with a re-
mote backend server only. In fact, SQLite has evolved to
become the de facto standard database for mobile devices.
Apple’s and Google’s mobile operating systems both use it
as the default database solution [1, 3]. While this makes
SQLite the backbone of most smartphone applications, it
neither o↵ers high-performance nor is it specifically opti-
mized for wimpy processors. Our benchmarks (see Sect. 4)
show that the performance of SQLite is orders of magnitude
slower than an optimized high performance database kernel.

Nonetheless, the need for high-performance database sys-
tems on mobile devices is growing. An increasing number of
applications run natively on mobile devices and roundtrip
latencies to data centers hinder user experience. The devel-
opment of more disconnected and sophisticated applications
thus requires full-featured high-performance data processing
capabilities. Besides, energy e�ciency is an important factor
on mobile devices and usually goes hand in hand with perfor-
mance [9]. This is because faster data processing consumes
less CPU time and modern CPUs can save large amounts of
energy using dynamic frequency scaling.

Ideally, a relational database system for both, brawny and
wimpy systems, should (i) o↵er high-performance ACID-
compliant transaction and SQL query processing capabili-
ties and (ii) be platform independent such that the system
is universally deployable and only one codebase needs to be
maintained. Further, mobile and embedded devices require
a database system with a small memory footprint.

A15

A7A15 A15

A15

A7

A7 A7

Cache Coherent Interconnect (CCI)

big
Coretx-A15 cluster

high performance
out-of-order execution

multi-issue pipeline
2MB shared L2 cache

LITTLE
Cortex-A7 cluster
energy efficiency
in-order execution
8 stage pipeline

512kB shared L2 cache

2GB LPDDR3 DRAM

(a) wimpy: ARMv7 big.LITTLE system

E5-2660v2
10 cores
25MB L3

E5-2660v2
10 cores
25 MB L3

8 x 16GB
DDR3 DRAM

8 x 16GB
DDR3 DRAM

QPI interconnect

(b) brawny: x86-64 NUMA system

Figure 2: Demonstration platforms: (a) a wimpy smartphone system and (b) a brawny server system

HyPer [5], our high-performance hybrid OLTP&OLAP
main memory database system, aims at fulfilling these re-
quirements. This demonstration presents our lean HyPer
system and showcases its high performance on both, a wimpy
smartphone system and a brawny server system (see Fig. 2).

2. THE HYPER MAIN MEMORY DBMS
HyPer [5] is a high-performance relational main memory

database system that belongs to an emerging class of hy-
brid databases, which enable real-time business intelligence
by evaluating OLAP queries directly in the transactional
database. In HyPer, long-running OLAP is decoupled from
mission-critical OLTP using an e�cient operating system
and hardware-supported snapshotting mechanism based on
the POSIX system call fork. As other high-performance
main memory database systems, HyPer eliminates the bal-
last caused by bu↵er management, locking, and latching.
This enables serial transaction processing at high speed.
With its advanced query optimizer, HyPer further achieves
superior query response times comparable (often even supe-
rior) to those of MonetDB and Vectorwise, two state-of-the-
art analytical main memory databases. Even though the
SQL-92 standard, a PL/SQL-like scripting language, and
ACID-compliant transaction processing are supported, Hy-
Per has a memory footprint of just a few megabytes.

3. DATA-CENTRIC CODE GENERATION
Most database systems translate incoming queries and

transactions into a physical algebra expression and evalu-
ate this expression using the iterator model. Every physical
algebraic operator produces a tuple stream from its input
and exposes this stream via an iterator, i.e., a function that
fetches the next tuple. Despite being convenient and feel-
ing natural, the iterator model is also very slow on modern
pipelined CPUs due to a great many (virtual) function calls,
degraded branch prediction, and poor code locality. These
negative properties of the iterator model are reinforced by
the advent of main memory database systems like HyPer,
where query and transaction performance is more and more
determined by raw CPU costs rather than I/O speed.

To deal with the issues described for the iterator model,
several modern database systems such as MonetDB and Vec-
torwise produce more than one tuple during an iterator call
or even all tuples at once. While this kind of block-oriented
processing reduces the overhead of function calls and allows
for the e�cient use of vectorization instructions, it also elim-
inates the possibility to pipeline data, i.e., passing data from
one operator to its parent without copying or materializa-
tion; severely limiting peak performance.

HyPer uses a di↵erent query evaluation strategy [7] to deal
with the shortcomings of the iterator model. We came to the
conclusion that it is not necessarily a good idea to exhibit
the algebraic operator structure during query processing it-
self. In HyPer, query processing is thus data-centric rather
than operator-centric. Operator boundaries are blurred to
enable pipelining and keep data in CPU registers as long
as possible. To improve code and data locality, data is fur-
ther pushed towards consuming operators rather than be-
ing pulled. Finally, to achieve optimal performance and get
most of the mileage out of a given processor, queries are
compiled to optimized native machine code instead of using
an interpreter.

More specifically, query compilation in HyPer is based
on the LLVM compiler framework and proceeds in three
steps: First, incoming queries and transactions are parsed
and an algebraic expression is generated and optimized. Sec-
ond, platform-independent LLVM assembly code is gener-
ated based on the optimized algebraic expression. The code
generator mimics a producer/consumer interface, where data
is taken out of a pipeline breaker and is materialized into
the next pipeline breaker. Complex operators, e.g., index
logic, are pre-compiled and calls to these operators are gen-
erated dynamically during code generation. Third, the gen-
erated LLVM assembly code is executed using the optimizing
LLVM JIT compiler, which quickly produces extremely fast
machine code; usually within a few milliseconds. The LLVM
compiler makes our query compilation approach portable, as
platform-dependent machine code is generated only in the
final step. LLVM backends exist for several instruction sets,
e.g., x86, x86-64, and ARM. In case an instruction set is not
supported, the LLVM interpreter can be used as a fallback.

Beginning with version 3.4 (December 2013), LLVM of-
fers more reliable and robust machine code compilation for
non-x86 platforms using the MCJIT compiler, which is also
used by Clang. For this demonstration, we thus ported our
query compilation from the legacy JIT compiler to MCJIT
in order to allow for the same codebase of HyPer to run
on a brawny x86-64 server system and a wimpy ARMv7
smartphone system. On both systems, sources were com-
piled using LLVM/Clang version 3.4.

4. DEMONSTRATION
This demonstration of the HyPer system exposes the key

features of our platform-independent query compilation for
wimpy and brawny systems and provides ways of visualiz-
ing performance and energy numbers for transactional, an-
alytical, and combined workloads. Size and composition of
the workloads are varied during the demonstration. To bet-
ter demonstrate our data-centric code generation, generated

0 k 25 k 50 k 75 k 100 k

A7 (LITTLE)

A15 (big)

Xeon E5-2660v2

throughput [TPC-C transactions/s]

serial

Figure 3: TPC-C throughput of the demo systems

LLVM and native assembly codes are shown and explained.
To showcase the full capabilities of HyPer, we provide an in-
teractive SQL editor in which arbitrary SQL-92 queries can
be executed and optimized query plans can be visualized.
The user interface for this demonstration is implemented as
an extension of the HyPer WebInterface1.

All benchmarks and interactive queries are executed si-
multaneously on two systems, (a) a wimpy ARMv7 system
and (b) a brawny x86-64 system (see Fig. 2):

Wimpy ARMv7 system. The wimpy system is an ARM
development board. The board’s hardware resembles
the one in the Samsung Galaxy S4, a state-of-the-
art smartphone. It features a Samsung Exynos5 Octa
5410 CPU, which is based on the ARM big.LITTLE
architecture and combines an energy-e�cient quad-
core ARM Cortex-A7 cluster with a high-performance
quad-core ARM Cortex-A15 cluster. Both clusters
have highly di↵erent characteristics (see Fig. 2(a)). The
clusters and a 2GB LPDDR3 DRAM module are con-
nected via a cache coherent interconnect. A 1TB ex-
ternal hard disk is attached to the development board
via USB 3.0. The system runs a customized Linux
kernel version 3.4. During the demonstration, the de-
velopment board is located at the demo site. To enable
energy measurements, the development board is con-
nected to a power supply that collects energy numbers.
The power monitor has a sampling rate of 10Hz and a
tolerance of 2%. It exposes its collected data via USB
to the development board from where it is pushed to-
wards the demonstration user interface.

Brawny x86-64 system. The brawny server system is a
2-socket Intel Xeon E5-2660v2 non-uniform memory
access (NUMA) system with 20 cores and 256GB of
main memory2. During the demonstration, the server
is located at TUM in Munich, Germany. The system
runs a Linux kernel version 3.11. For energy metrics,
we use the running average power limit (RAPL) energy
counters of the Intel CPUs. With these counters we
can record the power consumption of the CPUs and of
main memory, which make up a great fraction of the
overall energy consumption of the system.

The demonstration consists of three parts. First, a poster
is used to raise awareness for the growing number of devices
with wimpy processors. Performance of current database
systems running on such devices is discussed and opportu-
nities for performance and energy e�ciency improvements
are presented. Additionally, the HyPer system, its query
compilation, and the demonstration systems are introduced.
1
http://www.hyper-db.com/interface.html

2 Each E5-2660v2 CPU has 10 cores, 20 hardware threads,
25MB of last level L3 cache and 128GB DDR3 DRAM.

0 k 50 k 100 k 150 k 200 k

A7 (LITTLE)

A15 (big)

2⇥ E5-2660v2

throughput [TPC-H queries/h]

parallel

serial

Figure 4: TPC-H throughput of the demo systems

In the second part, three benchmarks are run to showcase
the performance and energy e�ciency of the demonstration
systems: the TPC-C, the TPC-H, and the combined CH-
benCHmark [2]. All reported performance and power mea-
surements are an average over multiple runs.

TPC-C. We run the on-line transaction processing bench-
mark TPC-C with 5 warehouses and no wait times.
Fig. 3 shows the serial execution throughput of the
demo systems. As expected, the brawny E5-2660v2
server CPU has a much higher single core peak per-
formance than the wimpy CPUs. Yet, close to 25 k
TPC-C transactions per second can be executed on
the wimpy system. Regarding performance per Watt,
the LITTLE A7 CPU processes 2.8 k transactions per
second per Watt and the big A15 CPU processes 10.4 k
transactions per second per Watt. SQLite is orders of
magnitude slower and less energy e�cient.

TPC-H. We run the 22 TPC-H queries on a scale fac-
tor 1 database. Fig. 4 reports the throughput num-
bers for single-threaded and intra-query parallel exe-
cution. Regarding performance per Watt, the LIT-
TLE A7 CPU processes 1.2 k (3.7 k parallel) queries
per hour per Watt and the big A15 CPU processes 1.5 k
(2.2 k parallel) queries per hour per Watt. SQLite is
again orders of magnitude slower: SQLite needed 5.6
hours to complete a single TPC-H run and used 131 kJ
corresponding to a mere 0.6 queries per hour per Watt.
While the scale factor 1 data set was the largest to
fit in the 2GB of main memory on the wimpy sys-
tem, the brawny system could obviously handle much
larger data sets. Regarding performance per Watt,
the brawny system processes 0.5 k queries per hour per
Watt (1.7 k parallel).

CH-benCHmark. HyPer is a hybrid database system and
o↵ers the possibility of evaluating OLAP queries on
recent snapshots of the transactional database. The
CH-benCHmark benchmarks the transactional and an-
alytical performance of such a hybrid database system.
In the CH-benCHmark a transactional workload based
on the order entry processing of TPC-C and a corre-
sponding TPC-H-equivalent OLAP query suite run in
parallel on the same tables in a single database system.

In the final part of the demonstration, users are welcome
to interactively try out the HyPer database by themselves.
Fig. 5 shows our SQL editor in which arbitrary queries on
the TPC-H and CH-benCHmark schemas can be composed.
Queries are executed on both, the brawny and the wimpy
system. The user interface reports response times and en-
ergy numbers. Besides query execution, optimized query

Figure 5: Interactive query editor (Q 6 of TPC-H)

Figure 6: Query plan visualization (Q 20 of TPC-H)

plans can be visualized (see Fig. 6). The visualization shows,
at a very detailed level, the operator structure, cardinal-
ity estimates, join types, and other information of the plan.
Users can further repeat the benchmarks by choosing a work-
load (TPC-C, TPC-H, and CH-benCHmark) and configur-
ing its parameters such as the number of concurrent query
streams (see top of Fig. 7). Throughout the demonstration,
energy numbers for the wimpy system are displayed in an
energy monitor (see bottom of Fig. 7).

5. TAKE-AWAY MESSAGE
Shipments of wimpy devices such as smartphones and

tablets are outpacing shipments of brawny PC and server
systems. With this demonstration we intend to raise the
awareness of the database community to focus not only on
optimizing performance on brawny, but also on wimpy sys-
tems. In particular, we demonstrate HyPer, a hybrid OLTP
&OLAP main memory database system with a small mem-
ory footprint. We highlight that its data-centric code gen-
eration and platform-optimized machine code compilation
allow for a lean database system that achieves high perfor-
mance on both, brawny and wimpy systems; even for di↵er-
ent CPU architectures. Thereby we get most of the mileage
out of a given processor. We further show that high perfor-
mance directly translates to high energy e�ciency, which is
particularly important on energy-constrained devices such
as smartphones and tablets. The platform-agnostic code
generation allows the HyPer system to maintain a single
codebase for multiple platforms. HyPer’s performance and
versatile usability enable richer data processing capabili-
ties for more sophisticated mobile applications. Addition-

Figure 7: Energy monitor and workload selection

ally, one platform-independent database system optimized
for brawny and wimpy systems enables distributed database
systems like our scaled-out version of HyPer [6] and energy-
optimized systems like WattDB [8] to be composed of hetero-
geneous nodes, each carefully selected for di↵erent workloads
and quality of service requirements.

6. ACKNOWLEDGEMENTS
Tobias Mühlbauer is a recipient of the Google Europe Fel-

lowship in Structured Data Analysis, and this research is
supported in part by this Google Fellowship. Wolf Rödiger is
a recipient of the Oracle External Research Fellowship. This
work has been sponsored by the German Federal Ministry of
Education and Research (BMBF) grant HDBC 01IS12026.

7. REFERENCES
[1] Apple. Data Management in iOS. https://developer.

apple.com/technologies/ios/data-management.html.
[2] R. Cole et al. The mixed workload CH-benCHmark. In

DBTest, 2011.
[3] Google. Storage Options. http://developer.android.

com/guide/topics/data/data-storage.html#db.
[4] IHS. Processor Market Set for Strong Growth in 2013,

Courtesy of Smartphones and Tablets.
http://press.ihs.com/printpdf/18632.

[5] A. Kemper and T. Neumann. HyPer: A hybrid
OLTP&OLAP main memory database system based on
virtual memory snapshots. In ICDE, 2011.

[6] T. Mühlbauer, W. Rödiger, A. Reiser, A. Kemper, and
T. Neumann. ScyPer: Elastic OLAP throughput on
transactional data. In DanaC, 2013.

[7] T. Neumann. E�ciently compiling e�cient query plans
for modern hardware. PVLDB, 4(9), 2011.

[8] D. Schall and T. Härder. Energy-proportional query
execution using a cluster of wimpy nodes. In DaMoN,
2013.

[9] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah.
Analyzing the energy e�ciency of a database server. In
SIGMOD, 2010.

