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Background — Steered Query Optimizers

B cdict/estimate » Database Systems expose knobs that can be used to stee.r query gxecution.
Hint-Set 1}—> mE > 65| % For example, PostgreSQL has knobs to disable nested loop joins or index scans.
e » Hint-sets (HS) can combine multiple knobs.
QL @ i .l. predict/estimate) . For example: {indexscan:fals.e,. nest.loop:fals.e}
Query = » Recent work on steered query optimizers either predefines [1] or randomly chooses

m . .
_ predict /estimate
Hint-Set 3}—> e ’ X
e | 1] Marcus et al.: “Bao: Making Learned Query Optimization Practical” (SIGMOD'21)

2, 3] multiple hint-set, which are used to generate alternative query plans.
» A deep neural network predicts the execution time of each plan.

Query dptimizer

2] Negi et al.: “Steering Query Optimizers: A Practical Take on Big Data Workloads” (SIGMOD'21)
3] Zhang et al.: “Deploying a Steered Query Optimizer in Production at Microsoft” (SIGMOD'22)
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Greedy Hint-Set Exploration

p 277knobs diffarent hint-sets: However, most yield bad plans.
» Greedy search finds promising hint-sets with reasonable overhead.
» Assumption:

Larger, beneficial HSs consist of smaller, beneficial HSs.
Not always, but in many cases true. Experimentally tested ¥

» Input: SQL query and query span (example: [ki, k3, kg, kol)

Default Plan:[@ — 605}

Inference Mode (PrestoDB /Join Order Benchmark)

» AutoSteer with an integrated database connector for PrestoDB.

» AutoSteer using a tree convolutional neural network to infer
execution times at runtime.

» Reduces execution times of unseen queries by 20.6% (opaque)

and seen queries by 26.8% ( ).
¥ Best Alternative Plan found in Training Mode
- B Plan selected in Inference Mode
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» AutoSteer with an integrated database connector for PrestoDB.
» For 137 queries, AutoSteer explored 1730 different hint-sets.
» Found between 8 and 34 different plans per query.

» Performance improvements of up to 40% per query.
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Dashboard Application at Meta (PrestoDB)

» Focus on tail latencies.
» >3000 queries scanning petabytes of data.

» \Workload runs every day on a PrestoDB cluster
having hundreds of compute nodes.
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